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Quasicontinuous control of a bronze ribbon experiment using time-delay coordinates
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We investigate quasicontinuous versions of the Ott-Grebogi-Yo0@@Y) control method in a bronze
ribbon experiment using time-delay coordinates for the reconstruction of the attractor. We apply as quasicon-
tinuous control methods the local control method and the minimal expected deviation method. As is known for
the original OGY method with time-delay coordinates, values of the control parameter at previous times appear
in the linearized dynamics. We discuss two possible ways to derive from this linearization feedback control
formulas. These are the extended state space approach and a modified control requirement that demands
stabilization not in the next time step but after- 1 time steps, wheres is the number of preceding parameter
dependences of the linearized dynamics. We show theoretically and demonstrate in the experiment that for the
quasicontinuous control methods considered in this paper only the modified control requirement shows satis-
fying results in the control experimed$1063-651X%X97)01502-X]

PACS numbd(s): 05.45+b

[. INTRODUCTION Poincaremapping. For driven systems, which we consider in
this paper, where the Poincasection is naturally taken as a
Since the late 1980s controlling chaotic systems usingection of constant phase of the driving, the maximal control
methods of nonlinear dynamics has become a very populdrequency is thus the driving frequency. If now the instability
area of research in the nonlinear dynamics community. Thef the UPO is very high then the amplification of measure-
problem of controlling chaos was addressed bgdher and ment noise can spoil the feedback control when controlling
Hubler [1], who proposed an open-loop control to force aonly once per driving period. Therefore, for experiments
chaotic system to a desired goal dynamics by adding a spevith large instabilities of the UPO quasicontinuous exten-
cially designed continuous driving force to the system. Tosions of the original OGY control have been introduced by
calculate this generally aperiodic force in advance a globaReyl et al. [6] with the minimal expected deviatiofMED)
model of the system has to be available or must be conmethod and by Hhinger et al. [7,8] with the local control
structed. Another approach is the feedback control of Ott( C) method. The, in principle, arbitrarily high control fre-
Grebog!, and Yorke, which we address in thls_paper. Ottquency is obtained by takiny equally spaced Poincasec-
Grebogi, and Yorke proposed 1990 [i@] to stabilize un-  yjons's per periodT of the driving as control stations. To
stable periodic orbitdUPOg embedded in a chaotic attractor cpieve stability of the UPO a quasicontinuous OGY control

by tiny tme-dgpendent parameter p_er_tgrbatlons. This wor us has to work with the linearizations of the mapping
has triggered immense research activities to apply feedback n+1)_ pas:

control to chaotic system&ee[3] and references thergin TP At=T/N, which maps a state from the
One reason for the attractiveness of the Ott-Grebogi-Yorké&oincaresectionX, to the next sectiork,,;. Now in the
(OGY) idea is that it is in principle possible to obtain all original OGY method the control requi[ement is based on the
control values of the feedback loop from a careful analysis okigendirections of the linearized Poincarapping. For the
a scalar measurement signal. No global model is requiredjuasicontinuous control methods the control requirement has
solely the local dynamics in the vicinity of the unstable orbitto be changed as the eigenvalues of the linearized mapping
has to be extracted from the measurement data. P(""*1) can have complex eigenvalues. Therefore the MED
With respect to the applicability of the OGY control ap- and LC methods use control requirements that are suited for
proach to real-world experiments there have been variousomplex eigenvalues too.
variations and extensions, e.g. the tracking approach of The second modification that we address comes in when
Schwartz and Triandd#] to cope with slowly varying pa- one uses time delay coordinate®-11] for the reconstruc-
rameters or the simple OPF feedback conffglto control  tion of the attractor. In this case the OGY feedback formula
very fast experimental systems. has to be modified in the way that also preceding values of
In this paper we want to address and combine the twdhe control parameter have to be considered to obtain the
following modifications of the OGY control. First, in the actual value of the control parametgl2]. The reason for
original OGY control approach the control frequency wasthis modification is that for delay coordinates the Poincare
limited to the frequency of the piercings of the continuousmapping depends not only on the actual control parameter,
trajectory through the Poincasection of the UPO, as Ott, but also on all preceding ones that were changed during the
Grebogi, and Yorke reduced the stabilization of a continuousime window 7,=(d—1)7 of the delay vector
UPO to the stabilization of the corresponding UPO of the(x(t),x(t—7), ... x(t—(d—1)7)). For a quasicontinuous
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control with a control frequency being, e.g., the samplingequivalent, this is no longer the case for the quasicontinuous

frequency 1At, the mapping®™™* = ¢y’ will depend on  control approach. In our investigations we discuss this point.
n . .

the lastw=1(d— 1) parameter changes wittbeing the time Finally, we compare the performance of these two quasi-

delay in units of the sampling time ardi the embedding continuous control approaches in a bronze ribbon experi-
dimension. We express this dependence @& ment. To test the control methods, all control vectors needed

:P(n,n+l)(zn p"%, ... p"Lp". Thus, to stabilize an for control are extracted from the analysis of a scalar mea-

UPO by a quasicontinuous OGY control using time-delaysurement signal. Furthermore, we extend the adaptive orbit

coordinates the fundamental equation of the control problerﬁorrect'?ﬁ[la QI.Doe;r][ﬁretUaIL:l.oto t|r'r(11e_d(tarl1ayfcogrt:jlnilt$s to |
is given by the linearization d®™"*1) having the form correct the position ot the used in the feedback formula

during control. In the experiment the modified control re-
w quirement will show the best result, while the extended state
SZ"Tl=AN. 5zn+2 b™spn, (1) space approach is not suitable for the control methods dis-
=0 cussed in this paper.
: . . . Before we start we want to mention that the control ex-
with 5.Zn:-2n_zr';, z be|ng+tlhe UPO in sectioBl, and}?e periment presented in this paper is not the first realization of
linearizationsA"=D»P""* and b™'= (g/ap" )P g quasicontinuous control using time-delay coordinates. Reyl

around @ ,Po, - - - o). Now, to obtain a control formula et g, apply the MED method in a NMR-laser experiment
one Cgﬂ!"vj use the  extended  state  vectorysing time-delay coordinatés]. However, they do not con-
y'=(2"p""", ... ,p"" ") and rewrite the dynamics as sider the dependence on preceding values of the control pa-

rameter. de Korteet al. use the local control method and
time delay coordinates to control an experimental driven
pendulum[17]. In their experiment they only consider the

6yn+1:Cn' Wn"_dnapn

with .
dependence of one preceding parameter value as they use
AN phW  pnw-l o pnd only four control stations per period of the driving and a time
delay window @—1)r, which is smaller tharT/4. Further-
0 1 0 more, in their control experiment they apply the original con-
cn= 0 : : trol requirerpent of the local control, i.e., stabilization in the
1 next Poincaresection, without modifying the control require-
ment as we do.
0 e 0 Our paper is now organized as follows. In Sec. Il we
justify theoretically the fundamental equati@ for the lin-
andd"=(b"°0, .. .,0,1f. For the OGY control with time earized dynamics in time delay embedding space when qua-

sicontinuous control is applied. In Sec. Il we first briefly
tecall the quasicontinuous OGY control in a physical state
realized in numerical experiments by So and [@4]. In [15] space. Then we give the two possible extensions for time-
Ding et al. report successful control of a magnetoelasticd€/@y embedding, i.e., the extended state space approach and
beam experiment using time-delay coordinates and an ef'® modified control requirement. After describing the
tended state space approach. In addition to the use of tH¥onze ribbon experiment in Sec. IV, we report, in Sec. V,
extended state space for time-delay coordinates, the work iUl control experiments using quasicontinuous control in
[13-15 also generalizes the OGY control requirement in the®Mbedding space. Our results are summarized in Sec. VI. In
way that also systems with more than one unstable eigendﬁ‘ppend'x A an explicit relation between the ImQarlzatlon_s in
rections can be controlled with a single control parameter. th€ Physical state space and the corresponding ones in the
The attractiveness of the extended state space approach§21°€dding space is given. In Appendix B we discuss how
that at first glance one can use the same control requiremeHt€ linéarizations in the embedding space are obtained from
as for the physical state space without a formal change. Fdp<Perimental data and how to avoid errors that are due to
the OGY approach using eigenvalues and eigendirections Hsing for the fits negrest-ne|ghbor points with finite dls_tances
the UPO as done ifl3—15, this also works in practice as to the UPO for which the curvature of the attractor in the
the eigenvalues and eigendirections in the delay space arfnPedding space can no longer be neglected.
the extended space are related in a very simple manner
[14,15. However, for the quasicontinuous control methods IIl. LOCAL DYNAMICS IN THE TIME-
considered in this paper, i.e., MED or LC, it turns out that DELAY EMBEDDING
the use of the extended state space formulation leads to a | this section we want to give some theoretical underpin-

scaling dependence on the units of the control parameteﬁing to the fundamental equatiofl) for quasicontinuous

Therefore, for our case we prefer another possibility to de¢ontrol with time delay coordinates that results from the de-
rive a control formula. We require stabilization not for pendence of the flow mappir@n,nﬁ-l):(bgn on the control

2"l but only for Z"™W*l with Sp"#0 and ter. To start with iation let us denote with
Sp"*1=...—3p"W=0. This control requirement coin- Parameter. To startwith our argumentation let us denote wi

cides with the second modification of the original OGY >n the N=T/At Poincaresections of constant phase of the
method in[12] given for time-delay coordinates. While for driving in the physical state space. Lgt=p,+ op" be the
the original OGY method these two approaches, i.e., the extalue of the control parameterwhen the system goes from
tended state space and the modified control requirement, asection 3, to 3. ;. Thus the flow mapping®™"*%) in

delay this was proposed by Romeirasal. [13] together
with a pole placement technique and later on worked out an
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the physical state space that maps a state 3, to a state  z"=®,(z",p"" 1), with p"t=(p" ™", ... p"" 1), and for

Z""%in 3., can be expressed as the  unperturbed  dynamics z'=®,(2",p,),  Wwith
. R ~ Po=(Po; - - - Po) € R™.
Mt i=pnntzn o) This dependence ab, on the preceding control param-

eters has direct impact on the flow mappi§"* 1) in the
or, more generally, the mappirff™"*% from 3, to 3,,,  time delay embedding space that mapso Z"*1. Starting

has to be written as with 2"*1=d,, (2" L p"), 2" 1=PM+1(Z" p"), and
Z"=d-(z2",p"" 1) one can expresg,,; as a function of
Sn+k_ p(n,n+k)on sn 4n+1 n+k—1 n ! n
z P (Z,p"p" N P ). z, as
Note that we always use a caret for the quantities referring to =0, (POD@ Y2 p" ), pM.p" . ()

the dynamics in the physical state space in order to distin-
guish them from the corresponding ones in the time delagut this is the flow mappind®™"*%), which, as a conse-
embedding space. quence, depends on the=(d—1)| preceding values of the

Now, for the reconstruction of the attractor we want to control parameter and the actual vajpi® i.e., we can write
use time delay coordinates. For a driven system it is appro-

priate to retain as additional coordinate in the embedding " I=pnnt bz =1 pn), (4
space the phase of the driving. Doing so we can introduce _ )
N successive Poincarsections3,, n=1,... N in the This finally leads directly to the fundamental equation for a

embedding space that exacﬂy Correspond to the Sectiorq;,lasicontinuous OGY control for time delay Coordinates,

3, in the orginal state space. For an embedding dimen?hich is the linearization oP(™" %) around the UPQE and
N :

sion of d+1 a point Z'e3, is then given by the control paramete

2'=(x"x""!, L X EEDNT S wherex"=x(to+ NAt) is an w
accessible measurement signal ardl At an appropriately S I=AM 52+ bMisp T,
chosen time delay. This measurement process can be math- i=0

ematically expressed as a scalar functioon the physical _ N . (ot 1)

state space, i.ex"=h(2"). For shortness of our formulas, With 02'=2"—z¢, ﬁ :Pznp " (ze . Po, - - - Po), and
we assume here that the measurement does not depend B = (9/9p" .')P(n'n LCANY o Po)- . .
the phase of the driving. According to Takens's theorem N Appendix A we support this result by giving an explicit
[10,11], for an appropriately chosen time delayand a relation between the linearizationd"=D;»P™"*1) and
sufficiently high dimensiond there exists a smooth, p"=(g/9p")P(™"*1) in the physical state space and the lin-
invertible embedding function®,, ie. z'=®,(2"), earizationsA" andb™ in the time-delay embedding space. In
which maps pointsz” from the Poincaresection 3,  Appendix B we confirm this relation further in a numerical
to points z" in the time-delay Poincareections,. This  experiment of a Duffing oscillator with a known measure-
ment functionh. In addition, we describe the pitfalls that
have to be avoided when determiniag andb™' from near-

3 .est neighbors whose finite distances to the UPO already ex-
the dynamics of the system and thus dependent on precedil@ience the curvature of the attractor in the embedding

pararrleter values when the control is appljed. To write th pace. As a remedy we propose the projection to the corre-
state” 1!, j=1,...,(d—1), as a function of” the inverse  sponding tangent spaces. In the simulation of the Duffing

PO=ilm ™" of the mapping?™ "M has to be used. Taking oscillator we demonstrate that this projection helps to im-
into account thaP("~1"" depends on the parameter valuesProve the determination o&" andb™' considerably.

function, which is given by z2"=d,(2")
=(h(z"),h(2"7"), ... h(z*~@=DY)T is closely related to

p" I ... p""!, the embedding functio®, can be written
as a function of" as IIl. QUASICONTINUOUS CONTROL
USING TIME-DELAY COORDINATES
h(z") In this section we first briefly recall the quasicontinuous
h(ﬁ)(n—l,n)’l(in,pn—ly P ) control in a physcial state space. We give a unified formula-
R . tion for the local control method and the minimal expected
M| h(PM=2m g g2 gLy (2¢)  deviation method. Both methods are slightly changed com-

pared to their first publication. After the presentation of the
R o explicit feedback formulas we describe two different ways to
h(PMN—wn 5" p"W . p" ) obtain control formulas when a time delay embedding is
used. These are the extended state space approach and a
N modification of the control requirement. In fact, for the OGY
=d,(2"p" Y, ... p" Y. (2b)  control method both possibilities have been studied 1B+
15] the extended state space approach is used for delay vec-
Thus, for quasicontinuous control the embedding functionors in combination with an extension of the OGY method
®,, depends not only onz", but also on the last for more than one unstable direction.[lt2,18 the modified
w=(d—1)l parameters. For an abbreviation we write control requirement is given for the original OGY method.
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While for the original OGY method with one unstable eigen- sp" is calculated and its zeros have to be determined. This
direction both approaches yield the same control formula, focalculation leads to the condition

the quasicontinuous control methods considered here the re- . .

sulting control formulas differ substantially, as we will show. bnt. 52" 1=0. )

Thus, also the control requirement of MED can be expressed
in the way that the projection afz"** on a special direction

Qanishes. If one compares Ed$) and (7) the control re-

adjus:hmer:t (?f tthe c_or:trol p?rameterfet@sz/”l\l when-d quirement of the LC method and the MED method differs
ever the trajectory Intersects one o equally space only with respect to the special choice of this direction.

Poincaresections. As in Sec. II, we denote with™"* % the To proceed with the derivation of an explicit control for-
fAIOW mapping in the physical state space that maps a Statr‘?]ula let us call this direction for a momeht. As was said,

2" to a statez"" . The starting point of a quasicontinuous the most pretentious control requirement would be
OGY control is the linearization d?™"**) around the UPO  fnt. 55n+1-0_ In the paper of Reyet al. this maximal con-

22 andpy, trol requirement is used fod=4 control stations per period.
R L But if the numbeN of the control stations increases the time
82"t =A" 52" +b"op", (5)  of the control actiom\t=T/N decreases. If the maximal con-
. trol requirement were retained the small control timé
with would lead to a large control signap". In order to avoid
- A - large control signals for high control frequencieshihger
A"=D P ™" D(ZE ) et al. propose to weaken the control requirement. In the LC
method they introduce a decay factor-p in the control
and requiremen{7]. We follow this idea, but formulate the re-
o mB(mn+1), 30 duced control condition in a slightly different way, which
b"=(d/p™)P™ (ZF . Po)- leads to better control results. We require that the application

N readv in two di . the li 7 atidA of th of the control signalSp" diminishes the projection of
w, alr in two dimension inearizati - ~
ow, already © ensions e fineariza or the Z2"*1 on h" by a factor 1-p compared to the one that

mappinglf’n can have complex eigenvalues. Therefore, the ~n+1 . S
A 0z ., would have if no control were applied, i.e.,

OGY control condition that the next star8** falls on the opi=0 PP

§tabl? eigendir_ection qu“, which is .formalized as Ant. 520+ 1= (1— p)AnT. 522;11:0. @)

- 82""1=0, with T} being the contravariant unstable ei-

genvector, cannot be used anymore. The LC method and tHaserting Eq.(5) into Eq. (8) gives the explicit control for-

MED method solve this problem by posing a control require-mula for the quasicontinuous control

ment that does not depend on the eigendirection&"of St An
In the local control method Hingeret al. use the singu- A" (9)

n— .
lar value decompositiofSVD) of A" in order to formulate a o P Aot pn oz’
control condition. LetA"=U0"-W"-V"T denote the singular

value decomposition oA™ with the orthogonal matrices"
andV" having as column vectors' andv!" and the diagonal
matrix W" with positive entriesw!, the singular values.
Having calculated the SVD, the action &" can be de-
scribed aA"- v!'=w'uf'. Thus the orthonormal basfs!} is B. Control formula using extended states

An . e
mapped on the orthonormal badis} with an additional Now we proceed with the quasicontinuous control in the

stretching or shrinking by the singular valugd. Having the  time delay embedding space when the starting point of the
singular values ordered by sizg is the unstable direction of derivation of the feedback formula is the linearization

A. Quasicontinuous control in physical state space

Quasicontinuous control for a driven system refers to th

with h"=v]"* for the LC method and"=b" for the MED
method. With Eq(9) we have the general feedback formula
for quasicontinuous control in physcial state space if the lin-

earization ofP""*1) are given by Eq(5).

A" (here we assume that only one unstable direction éxists w
In the local control method one requires that the projection 521t 1=AN. 5Zn+z b™i spn
of 52"** on the unstable directiov " is diminished. Thus, =0

for perfect stabilization the control requirement of the local

control could be written as We start with the extended state space approa8k15. An

extended state is given by'=(z",p""1)'. Thus with the
it sontlog 6) extended states the preceding parameter dependences
! p"~l=(p"W, ... p"" 1) are considered as state variables.

In the minimal expected deviation method Reylal. use ~ P0iNg S0, the linearized dynami¢$) can be written as
another control requirement. They require that the distance
| 62"*1| to the UPO in3,,  is minimized. In order to find
this minimum the derivative of|6z"* %2 with respect to  with

&/n+1:Cn_ byn_'_dnépn, (10)
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A" p"Ww pnw-lo . pnl viewed as a coordinate transformation and, as is well known,
C"= 0 N , (113  the SVD is not invariant under a coordinate transformation.
w Thus, for both quasicontinuous methods the use of an ex-
thewx w nilpotent blockN,, ter_lded state space shows an undesirable dependgnce on the
units of the control parameter. The control experiments in
o 1 --- 0 Sec. V will show that this dependence indeed causes a break-
down of the control for certain choices of the scaling param-
: A R eter o. In contrast to this, the extended state approach in
Nw=|: ... - 1 (11b [13-15 is combined with a control requirement based upon
0 ... ... 0 eigenvalues of the controlled probldd] or the eigendirec-
tions of the UP(Q[14,15. As the eigenvalues are invariant
under a transformation of coordinates, no problem arises
and with the pole placement technique [i&3]. The use of the
neno + eigendirections of the UPO 14,15 for the control require-
d"=(b"%0,...,0,3". (119 ment does not lead to the above-discussed problem either.
This is so because the eigendirections of the linearized Poin-
aremappingA and the associated mati& in the extended
tate space obey a very simple relationsHig,15 that is
preserved under a coordinate transformation. If we denote
with &' ande® the unstable and stable eigendirections of the

Note that Eq(10) has the same form as the linear approxi-
mation (5) in the physical state space. Therefore, the controg
requirement can be chosen in complete analogy to(&q.
This leads to the control formula

hnt.cn dxd matrix A, then the unstable eigendirections of the
5p“=—pw-éy“, (12 (d+w)x(d+w) matrix C are given by €'0,...,0f

e R4™W and the stable directions bye¥(0, ... ,0)f e RA*W

with h"=v* the singular vector corresponding to the larg- and an arbitrarily chosemw-dimensional basis of the null
est singular value oE™** for the LC method and"=d" for ~ SPace ofC¥ [15]. This relationship between the eigendirec-
the MED method. For the local control method we assumdions ofA andC is not affected by a change of scales of the
that the largest singular value/’l‘“ of C"*1 is the only control parametep. Therefore, the use of the extended state
singular value that is larger than 1. space works fine for the control requirements usefilB+

From a formal point of view, the problem of quasicon- 15].
tinuous control with time delay coordinates could be re- B _
garded as solved. But, as was already mentioned in the In- C. The modified control requirement

troduction, the at first glance simple and convincing use of Ap alternative way to derive a feedback formula starting
the extended states leads, for the quasicontinuous contrglym the linearization(1) is to modify the control require-
methods considered here, to an undesirable dependence gignt. For the original OGY method with time delay coord-
the units of the control parametpr We demonstrate this by jantes this was done ii12,18 for the special case that only
showing that the control formulel2) depends on the scaling one preceding parameter dependence appears in the linear-
of the parametep. To do this we replace all paramete?$  jzation. The control requirement was modified in the way
by p"/o and all vectord™" by ob™". Taking the structure of that the system had to stabilize only in two control steps,
y'=(z"p""H)" andC", d" in Eq. (11) into account, we ob- je., forz"*2, for an appropriately chosen parameter pertur-
tain in the case of the MED methoti=d") the following  pation 5p"#0 and 5p"*1=0. We generalize this modified

expression for Eq(12): control requirement for generel and the linearizatiofl) of
w the quasicontinuous control. Because the parameter value
b0 | AN 5714+ S b spn-i p" influences the trajectorg"*1,2"*2, ... until """, we
= require that the system stabilizes only aftet 1 time steps
p"=-p b0t 10+ o 2 . (13 for an appropriately chosen parameter perturbatiph=0

without further control interventions in between, i.e., the

Due to the appearance of 2 in the denominator, this con- modified control requirement is

trol formula is not invariant with respect to the scaling factor Nt eontwtl_ Nt eontwtl

o. A similar result is obtained for the LC method in which hy'- oz =(1=p)hy" 0Z5pn o™ (143
the scaling dependence is caused by the singular value de- 1 s

composition ofC". The deeper reason for this is that, al- spTTi=optTi=- . =op"TM=0. (14b
though the equatiofl0) for the linearized dynamics in the . . .
extended state space is invariant under a scaling of the con 1 9°”d"L‘1'1V(91143 'S F:hosen n complete analog)v/vig Eq.
trol parameter, the control requiremefisys.(6), (7), or (8)] (8)_W'th rizv(z&nlzo denoting the. distance vector B

of the LC and MED methods are not invariant under a reswhich z would have if no control at all(i.e.,
caling ofp if they are formulated in the extended state spacedp"=0) were used. The direction, depends ow and is

For the MED method this can directly be seen insertifig chosen below in such a way that the LC method and the
and 8y"** in the control requiremer(?) or (8). For the LC ~ MED method are obtained.

method one has to have in mind that the control requirement To derive an explicit control formula, 5z2"*"**

(6) is based on the SVD &@"**. But a rescaling op can be  and 522,}‘%1 in Eq. (1438 have to be expressed as a
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function of the actual statéz". This is done by using the
linearizations A),=D P WH(Z no. ... pg)  and
b= (9/gp"~TYPMMHWEL (A no L po) and taking the
condition(14b) into account. One obtains

]

w
SZIFL= AN 520+ > b spn T, (15) 5
i=0 o b &
Ult) i
The matriceshy, are given byAj=A"""...A" The vectors 7 !
by’ can be recursively calculated usib§'=b™' and 7 &
AT, for i [ RS
b= An*i.pt + b i T for j<i. s N s N

FIG. 1. Experimental setup of the chaotic bronze ribbon. A hori-
Inserting Eq.(15) in Eqg. (149 yields the desired control zontally cantilevered bronze beam equipped with two small perma-
formula nent magnets is located in an inhomogeneous magnetic field. Two
coils are placed around the free end of the beam and are supplied
with an ac voltageU(t)=Usinwt+p, with U,=0.6 V and
T=2w/w=1 s. The offset voltage is used as control parameter.

w

hnt.| An. 5z“+i§1 b 5pn

sp"=—p A0 . (16) Measurements are taken with a wire strain gauge at the fixed end of
hy' - by the beam to obtain a voltage signatelated to the deflection of the
beam.
For the LC method, the directioh], is given by
hh =vi*W*l  where vi™"*! is the singular vector of

; N , .~ placed around the free end of the beam and supplied with an
, which refers to the direction of maximal stretching. 5. voltageU (t) = U xsin(2m/T)t+p with U,=0.6 V and the

Fr?r tr:]% _MED metho?‘ _th_e d|rect|on_ h_as to be ch_osen aﬁriving period T=1 s. The offset voltag® is used as the
hy=D,;" in order to minimize the deviation of the trajectory ¢,niro| parameter, which can be adjusted via a 12-bit reso-
from the desired orbit in sectioBy..,.1. Both possible di- yton digital-analog converter from a 486 personal computer
rections lead to a control formula that does not depend on 0.

scaling factor of the control parameter, in contrast to the ag the measurement signet) we use the voltage signal
control formula(12) using extended states. The simple rea-of 5 \ire strain gauge that is related to the deflection of the

son for this is that not only the linearized dynamid, but \;iprating beam. Using a 12-bit resolution analog-digital con-
also the control requiremerii4a with Eq. (15) is not af-  erer the voltage signal is transferred to the PC. Setting the

An+w+1

fected by a rescaling gf. . sampling timeAt of the converter toT/64, we introduce
Note that in the formulation of the modified control re- \— g4 Poincaresections for the control.
quirement Ep"+#0 and sp"ti=...=6p"""W=0) and the

consecutive derivation of the control formul6), the pa-
rameter perturbations are in principle calculated until
Sp"*Y. In the experimental realization, however, where With the sampled measurement signdl=x(to+nAt)
noise is always present, we calculaip" at every control the dynamics of the system is reconstructed using two time
stepn once again in order to use the possibility to correct thedelay coordinatesx(,x"~') and the phase of the periodic
parameter perturbation using the actual measurements of tigiving U xsin(2a/T)t. The use of two time-delay coordinates
system. with a time lagl =5 is suggested by the integral local defor-
Now we want to test the performance of the two differentmation method of Buzug and Pfistg0], which we applied
control formulas(12) and (16) in a mechanical experiment. in order to determine optimal parametersand d for the
For the control experiments all control vectors needed for théime-delay embedding.
control formulas are extracted from the analysis of a scalar When the control parameter is setpgg=—0.2 V a cha-
measurement signal. Before the results of these control extic attractor with correlation dimensidh,~2.75 in the em-
periments are reported we first describe the experimentdledding space is foun¢Fig. 2). Embedded in the chaotic

B. Determination of the control vectors

setup. attractor, four period-one UPOS$§Figs. Ja)—3(d)], one
period-two UPQFig. 3(e)], and one period-three UP[Fig.
IV. THE BRONZE RIBBON EXPERIMENT 3(f)] are detected using the method of best recurrent points
_ described in8]. All UPOs are also found using three time
A. Experimental setup delay coordinates or using differential coordinates, i.e.,

The experiment was stimulated by the magnetoelastie"=(x",x"), to reconstruct the dynamics of the beam. For
beam experiment of Moof19]. A detailed description can differential coordinates successful control and tracking of the
be found in[8]. The experiment is a horizontally cantile- UPOs are already described[i8] and[21].
vered elastic bronze ribbon equipped with two small perma- The linearization?\" of the mapping®™"* 1) around an
nent magnetgsee Fig. L The beam is located in an inho- UPO are extracted from the dynamics of the nearest-
mogeneous magnetic field. To drive the system two coils areeighbor points in the time-delay embedding space. From
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FIG. 2. Chaotic attractor for the bronze ribbon for
po=—0.2 V. 50 000 points"=(x",x""') are shown in the Poin-
caresections,; with time delayr=5At, At=T/64. The correlation
dimension of the attractor in the Poincasection is calculated as
D,~1.75.

0.4

06 -04 02 0 02 04
z(kT)

FIG. 4. Poincarsection of the chaotic attractor when the system
is disturbed in each time step by a small random perturbatigh
e[—0.07 V,+0.07 V]. This perturbed attractor should be com-
pared with the unperturbed attractor in Fig. 2.

turbed at each time step by a random perturbat&p?

50 000 driving periods we extract 300 nearest-neighbore [ —0.07 V,+0.07 V]. These perturbations do not change

pointsz" in each Poincarsection to fit the matriA" to the
model 2"**=A". §z". To obtain the dependencés'' on
the control parameter we record a second time séagain
50 000 driving periods where the control parameter is dis-

0.3

t—7T)

B -0.3

T T T T T
06 -03 0 03 -06-03 0 03
(1) (1)

FIG. 3. Four unstable period-one orbits)—(d), the unstable
period-two orbit(e), and the unstable period-three orffit of the

significantly the global dynamics of the system as Fig. 4
compared with Fig. 2 shows. Now the vect®s' are fitted

to the equationsz""1—A". 52'=3" b sp" ' using the
matrix A" and 300 nearest-neighbor points. A more detailed
description for the determination of the linearizations is
given in Appendix B.

V. CONTROLLING THE BRONZE RIBBON

Before we discuss the control experiments to compare the
performance of the quasicontinuous control for time delay
coordinates based on the formu(d®) and(16) we first want
to describe the adaptive orbit correction of Doeretial.
[16]. We always use this procedure in order to redetermine
the position of the reference UPZ} used in the feedback
formula before we start with the actual control experiment in
question.

A. The adaptive orbit correction

This procedure improves the control performance of ev-
ery OGY-based control method considerably because it helps
to deal with drifting parameters that affect the true position
of an UPO. As Schwartz and Triandaf already reported for
the original OGY method if4], an errror in the determina-
tion of the UPO leads to a systematic deviation of the aver-
aged control signal from zero. For the quasicontinuous con-
trol Doerneret al. observed that a difference between the
true UPOZ; ,, of the system and the orhif used in the
feedback control formula leads to an almost periodic trajec-
tory zZ"=z"*N and an almost periodic control signal
8p"~sp"*N (Fig. 5. The adaptive orbit correction enables
one to calculate a new estimate z¥ . during control by
exploiting the periodicity oz" and 5p".

bronze ribbon, which have been detected by analyzing best recur- We describe the adaptive orbit correction in the context of

rent points forp,=—0.2 V. They are shown in th&(t)-x(t— 7)
plane with7=5At.

quasicontinuous control using time-delay coordinates. The
basic idea is the following. As the controlled trajectafyis



2152 A. SCHENCK zu SCHWEINSBERG: al. 55

0.03 1 0.5
.o —~ VaNy g
. 003—\/ ~ ) 2 o
-0. 8
-0.06 -0.54

0.12 'VV\ /V\ /"‘\-n 0.09 1 J orbit correction
/ 0.06 - -

g

vw 8
\ / v 0.03 s
-0.12- e

5p”
o

(lépl)

T T 0 T T T T
1 16 32 48 64 0 300 600 900 1200 1500
n k
FIG. 5. Quasicontinuous control of UPO 1 usigy extracted FIG. 6. Repeated orbit correction of the period-three orbit

from the analysis of best recurrent points. Twenty periods of theshown in Fig. 8f) beginning with the orbits extracted from the
controlled orbits are recorded. In the upper part the differenceanalysis of recurrent points: In the upper part the stroboscopic mea-
ox"=x"—x¢ between the desired orbif used in the feedback suremenk(kT) in the Poincaresections,; and in the lower part the
control and the observed trajector} and in the lower part the averaged control signd|dp"|) over one period of the UPO are
applied parameter perturbatior@p” for successful control are shown for 1500 periods.

shown versus for 20 periods of control.

) . some repetitions the applied averaged control si¢jrd|) is
still close to the true UPQ@¢ o and the parameter perturba- minimized. This procedure is shown in Fig. 6 for the period-
tions 5p" are small, in each sectidn,,n=1,... N, z"and  three orbifFig. 3(f)]. As can be seen with this procedure, the
Sp" have to fulfill the linearized dynamics adaptive orbit correction leads to a reduction of the averaged
w control signal by a factor of about 7. Depending on the initial
n+1_ N+l _ an_/on_ n ni spn—i error in the determination of the true UPO, we also observed
z ZF rue= A (21 ZF jrud) T 20 b™sp™, (A7) a reduction factor 10.
with A= AN pni=p" NI andz? | =z, For perfect
periodicity of 5p" andz" this set ofN vector equations can
be solved with respect tag . to obtain a new guess Before we report the results of our control experiments,
Z! ., of the true orbitz , .. In the case of time-delay co- We mention the additional control rule that we always use in
ordinates it is not necessary to solve the whole seiNof OUr control experiments. To stabilize the UPO the control

vector equationg17). Because of the special structure of Signal 6p" calculated from Eq(12) or (16) is only applied
a time-delay vectorz"=(x",x""', ... x"™"T, already when its magnitude is less than a maximal allowed parameter

the first component of each of th equations suffices Perturbationdpmg,. In addition, control is also applied if
to determine a whole time delay UPOZ!,., | 62" is less than a maximal distan@zyay, but the calcu-
! lated parameter perturbation exceeifs, ., [8]. In this case
we only restrict the control t&p,,,x and give the control
signal the sign of the calculatetp”. This additional control
d-1 rule ensures that control is never suspended if the system is
XML ie= 2 Al (X =X close enough to the UPO. o
i=0 To study the performance of the quasicontinuous control
w in the mechanical experiment we concentrate on the period-
+E bT‘i(Sp”*‘, n=1,... N (18 one orbit of Fig. 8a), which we call UPO 1. The results do
=0 not vary significantly from the other UPOs.

) N ) ) First, we try to stabilize UPO 1 using the control formula
with respect 1o Xg ., t0 obtain a new estimate (12) making use of the extended states. As was already dis-
Xg newsN=1, ... N, to build z¢ ,,,. Of course, this holds cussed in Sec. Il B for the quasicontinuous control methods
only for perfect periodicity ofsp” andx". Because of mea- (LC or MED), the control formula(12) depends on the
surement noise in experiments, one averagp$ and X"  choice of the units of the control parametgrsTo investi-
over some periodéin the experiment we use four perigds gate the effect of this dependence in the experiment we re-
and inserts the averagesp") and(x") instead of6p" and  place all parametens” by p"/¢ and the corresponding vec-
x" into the set of equationd8). Nevertheless, due to errors tors b™ by ob™' and apply the local control using2) for
of A" and b™ we cannot expect that the new estimatedifferent scaling factors. In Fig. 7 we show the experimen-
Zf new Oives already the correct value @ .. Therefore, tal result for the local control method using=20,
we use a weighted averag@(x)=xzt newt (1= X)Zf oq» =200, ¢=2000, c=20 000, ands=200 000. As can be
x€[0,1], in the feedback control. Starting with=0, we  seen, successful control can only be achievedfer200 and
increasey slowly until no further decrease of the control o=2000. Furthermore, the calculated control signal clearly
signal can be achieved. Using the orbit resulting from opti-depends on the scaling facter We did the same experiment
mal value ofy, the next correction step is repeated. Afterfor the MED method using the extended states. As for the

B. Quasicontinuous control with time-delay coordinates

= (XP news XE news - - - X&) Thus, for time-delay coordi-
nates one solves the setMfscalar equations
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FIG. 7. Local control of UPO 1 using extended states with
0Zmax=0.1, 6pma=0.12 V, andp=0.15. Starting with the scaling
factor 0=20, every 500 driving periods the scaling facteris
increased by a factor 10. In the upper part the stroboscopic me
suremenk(kT) in the PoincaresectionX ; and in the lower part the
applied control amplitud€|Sp|) averaged over one period of the
driving are shown as functions of the perikd

FIG. 8. Local control of UPO 1 using the modified control re-
quirement withéz,,,,= 0.1, pmax=0.12 V, andp=0.15. In the up-
per part the stroboscopic measuremefkT) in the Poincaresec-
tion 3, and in the lower part the applied control amplitudép|)
averaged over one period of the driving are shown as functions of
the periodk. From 0 to 499 the stabilization is demanded after
j=1 time step; afterward the valyds increased every 500 periods
LC method, only for certain values af, however, different by 1.
from the ones for the LC experiment, could control be . . .
reached also with the MED method. There is no simple rul ime-delay coordinates for the reconstruction of the attractor.
how to find the right values of-. We observe that the ap- Vith quasicontinuous we refer to control methods with, in
propriate value depends on the method and even on the pg_[mmple, arbitrarily high co_ntrol frequencies that are espe-
rametersd, ~ of the time-delay embedding. The best choiceCally advantageous for highly unstable systems. In the
with respect to control cannot be predicted in advance. Thuronze ribbon experiment we apply as quasicontinuous

using MED or LC control in the extended state space re/methods the local control method and the minimal expected

quires a blind search in the control experiment for the rightdeviation method. Both methods achieve a high control fre-
units of p. quency by introducing several Poincasections per period

Next we want to investigate the performance of the qua®f the driving. As is known for the original OGY method, for
sicontinuous control if one uses the control form(llé) that  time delay coordinates the feedback law has to be modified
results from the modified control requiremémt). Here one  in @ way that also preceding values of the control parameter
requires that the system stabilizes only after 1 time steps. have to be included in the control formula. For a quasicon-
For the time delay embedding with=2 andl=5 the win-  tinuous control with high control frequency being, e.g., the
dow lengthw=(d—1)l is 5 and therefore the stabilization sampling frequency M, there arew=1(d—1) preceding
has to be required after six time steps. To demonstrate thatarameter
the modified control requireme(it4) is indeed necessary we

apply local control to UPO 1 using a feedback control for- a) b) o) Q) e) f)
mula that results if one requires stabilization after

j=1,2,...,until nine time steps. Figure 8 shows the result o 0-31

of this experiment. It is clearly visible that far=1 and = 0

j=2 no successful control is achieved. The UPO can be ° -0.3-

stabilized forj=3, but the control signal is minimized for 0.6

j=7. A further investigation shows that the averaged dis- 0.12

tance between the UPO and the trajectory of the system has

a minimum forj=5. Both results confirm our theoretical & 0087 3
choice j=w+1. With this choice we could stabilize all =~ 0.044 d{
UPOs of Fig. 3 using the MED or the LC method in Ef6). R
In Fig. 9 we show an example of a successful control experi- 04+

ment using the LC method. Every 500 driving periods we 0 500 1000 1300 2000 2500 3000

switch from one UPO to the next one. As can be seen, the
transignt time to stabilize_ the next UPO is always very short. FIG. 9. Local control(modified control requirementof all
We did the same expe”mem for the MED method. Therq}POs shown in Fig. 3. The magnitude of the unstable eigenvalues
was no qualitative difference betwee_n the MED or the I-Cof the period-one UPO and of the period-two orbit are of the order
m.eth.od as long as one used the modified control reqmremerib while the unstable eigenvalue of the period-three orbit is
with j=w+1. —720. The control is switched on &t=0; every 500 driving peri-
ods we change the UPO to be controlled. The stroboscopic mea-
VI SUMMARY AND CONCLUSIONS suremen(kT) in the Poincaresections; and the applied control

In a bronze ribbon experiment we have implemented quaamplitude(|5p|) averaged over one period of the UPO are shown

sicontinuous versions of the OGY control method usingas functions of the periok.
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changes to be taken into account. Heie the discrete time  .51culated from the corresponding linearizatiohs and b"

delay, i.e., 7=1At, andd the embedding dimension. This is . . ;
an in)gmedi;te consequence of the factgthat in the time delal’ the physical state space and the gradient of the measure-
thent functionh. Before we give this relation we briefly re-

P ; N+1)_ At :
embedding space the mappifyf d"zn from section call our notation of Sec. Il. First remember that we always

2, to the nextX,,, depends on all preceding parameter ;e 5 caret for the quantities in the physical state space in
values that were changed during the time windowqqer g distinguish them from the corresponding ones in the

mw=(d—1)7 of the delay vector. In an explicit calculation . : : otion
we show this dependence. In addition, we give a relatior;[Ime delay embedding space. The embedding fun

between the linearized dynamics in the time-delay embed €lates a state” in the physical state space with a staten
ding space involvingA" andb™,i=0, . .. w, and the linear- the time delay embedding space. According to &, ®,
ized dynamicsA” andb" in the physical state space. With depends for active Ql.,laSICOI’ltInEJOUS control on thevapi-
this relation one can, in principle, calcula8 andb™ from ~ rameter changes, i.ez'=®,(z",p""", ... ). The
A" andb" knowing the gradient of the measurement functionvfftlo_r ontwparamsgelr fpertutr_batlon ¢ ISI a(ljal?revtlﬁted as
h. This relation can be exploited in numerical simulations toP =7 - P )_or active contro Wan or the un-
investigate, e.g., different methods to obtAfhandb™' from perturbed dynamics g%=(po, - . . ;o) € K™ . .
measurement datas we do in Appendix Bor to test qua- . No_vv we can express the relation betwe_en the lineariza-
sicontinuous control concepts without the cumbersome ext_|ons in the delay state space and the physical state space as
traction of A" andb™' from measurement data.
Starting with the linearized dynamics includisg' and
b™! in the time-delay space, there are two ways to obtain an
explicit control formula. One is the extended state space ap-
proach followed by the standard control requirements of the
MED and the LC method; the other is a modified control
requirement that requires stabilization not &1 but for
"Wl with 6p"#0 and sp"Tl=-..=6p""W=0. With
this modified control requirement one bears in mind that th . .
parameter changép” influences the system until the sectionq_'ereNW IS tAheWXW elementary ”"Po}em blockEg. (11b)]
n+w-+1 andsp™ ! only until n+w. While for the original ~ and D;n®n(z¢,po) and T’y =D yn-19Pn(Z2 ,Po) are the Jaco-
OGY method both approaches, i.e., extended state space ahiin matrices of®, with respect to the state" and the
modified control requirement, are equivalent, for the quasiparameter perturbations’ 1. In Eq. (A6) and (A10) these
fr?_mi_”uousi controtlhmethodsl C?nsid?‘tr?d héME?tr?rtLtﬁ) matrices are given as a function Af, b", and the gradient
is is no longer the case. In fact, it turns out that the ex- ; : . n 4
tended state space approach is not suited for the MED or thc()ef the measurement functidn Fmally, DZ”CD”(ZFipO) d?_
LC method as it leads to a control formula that depends offPtes the Penrose pseudoinverse of tecd matrix
the scaling of the control parameter In the experiment we Da®,(z¢ ,po) with d and d being the dimensions of the
demonstrate that this scaling dependence causes a bredk@incaresections in the physical state space and the delay
down of the control for certain units gf. In contrast, the state space.
control formulas based on the modified control requirement In order to derive the relation@1) we consider the ex-
show a good control performance in the experiment, even foiended states
high periodic orbits with large instabilities. Furthermore, be-
tween the LC method and the MED method no qualitative y'=(Z"p"HT, Y= p" HT
difference could be observed. Both methods will lead to sat-

isfying control results provided that a high enough controland its successogé** andy”**. In the physical state space

frequency has been used. Finally, we remark that for control,q fow mapIS(n,n+1) can be simply extended to a mapping
experiments where the control parameters have been dete

mined in advance it is advisable to use an adaptive orbifij(n'nﬂ) that develops a statg® into y™** via
correction to obtain an optimal reference value for the feed- Sl st ), en n

back control. This improves the control performance consid- yr =Py pY)

erably irrespectively of which OGY control method has been — (B3N o) Ny
used. (z",p"),p".

A"=Dsn®,, 1(Z"1 o) - A" D5nd 1 (Z2 ,po)*, (Ala)
(b™, ... b")=N, T, ,—A"T,, (Alb)
nd

b™"0=Dsn1P,, 1(Z2 1, po) - B (Alc)
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APPENDIX A: EXPLICIT RELATION BETWEEN
THE LINEARIZATIONS IN THE PHYSICAL STATE (An 0 )

SPACE AND THE DELAY STATE SPACE Ch= 0 N
w

(A2a)

In this appendix we show that the linearizatioh$ and
b™" in the time-delay embedding space can be explicitlyand
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d"=(b",0,...,0,)" (A2b)  Z!. Using the definition of the embedding function in Eq.

(2), the entries of thelx d matrix D;n® (2 ,po) = (¢") are
For the dynamics in the time delay embedding the exgjiven by #Onlze PO =(41)

tended flow magP(™"*1) that develops a staté' to y" ! is
analogously defined by g . , R
1=~ hP" 072022 o).
yn+1:,P(n,n+l)(yn,pn) o"Zj
= (PN (y" pM),p"). (A3)  The first row of D;®,(Z2,p,) is the gradient of the mea-
: R n n y\_ Zn
The linearizations ~ C"=D,nP"™" (YL, po) and ;u;%rﬁlznéztirr;ggocﬂ;,nl.sé \(,:,ﬁnlttlen és’¢l'W) vhize). The re
d"=(a/9p") P (YR, po) of Eq.(A3) around the embed-
ded UPOy} andp, are already given in Eq$10) and(11). ¢ﬂj:[Vh.(An7(ifl)l)fl. . .(Anfl)*l]j (AB)
Let us now consider the relation between the mappings
P(n+1) in the physical state space a®™"*1) in the em-  for i=2,... d, where the square brackefs]; denote the
bedding space. To do this we need the funcionbetween jth component of the included vector.
the original statey” and the corresponding statg%in the Since®,( ,p,) Maps states from d-dimensional space
embedding space 3., to a subset of thel-dimensional spac&,, the inverse
- - of the Jacobian matringntbn(EE ,Po) does not exist.
Y=o (y")=(@a(yN),p" H'. (A4)  But we can determine the Jacobian matrix of the inverse

embedding @;1( ,Po) remembering that®,(,pg) is
a diffeomorphism between3, and the submanifold
@, (3,.,po). Thus the derivativeDgnCDn(iE ,Po) is bijective
,P;r;,n+1):q,n+10,f3(pn,n+1>oq,n—1_ between thed-dimensional tangent spacégginzﬂ%d and

n

Using this extended embedding functiods, and writing

'PE’?,'“”) instead of P™"*1)(",p"), we obtain

ngtbn(in ,pO)ERaCRd. It is known that in such cases the

The linearization of this equation leads to a connection beggrivative D nq)—l(zg po) of the inverse mapping
zZ n '

tween the quantitie€",d" andC",d", i.e., ®.Y( ,py) with respect toz! is given by the Penrose

pseudoinverse of the matrlx;ntbn(i’; ,Po)- To calculate the

pseudoinverse, which we denote Ibyn¢>n(2’; .Po)?, the sin-

and gular value decomposition of the mati;:®,(z2 ,p,) can
be usedD;®,(Z} ,po)* is then given by

C"=Dynr1¥ 4 (YR -C"-DynW YY) (A58)

d"=Dgns1 W, (yp Y- d". (A5b) .
T Din® (22 po)# = V- Wy L-UT (A7)

The relations(A5) allow one to calculate the quantiti€’
andd" from the corresponding linearizatio®" andd" in

; O on+1

B . NoW we L (o he extended embeding furct

y"En _yF_ _ ’ ) a1 defined in Eq(A4), which is used to describe the embedding
Iowmg,l it is possible to determin®gn-1¥,.1(yg ") and  process when the control is activated. The Jacobian matrix of
DynW; “(y§) when the linearized flow map" andb” inthe  Eq. (A4) with respect to the poini=(Z,po)" is split into
physical state space and the gradient of the measuremesur parts
function h are known.

We first consider the embedding functidn, defined by
Eq. (2) in the case that no control is applied. Let us assume DynW (YR =
that the physical state space is spanned by the phase of the Y
driving andd physical coordinates, so that the Poincaee-
tion 3, is ad-dimensional set. Having chosehtime-delay ~ Wherel,, is thew-dimensional identity matrix a zero ma-
coordinates and the phase of the driving for the reconstructeidix with d columns andw rows, andD;®,(z},po) the
states, the dimension of the standard Poinsaaion, is  apove described Jacobian matar=Dpn-1d>n(22 .Po) is

d, which is in general higher than the dimensibf 3, in  the Jacobian matrix ob,, with respect to the parameter per-
the physical stateAspace. Therefo[e, the image of the embequbationpnfl aroundEE andpg e RY. The definition of®,
ding funct?on(l)n(En ,_po) is only ad-di_mens_ional subS(_at of in Eq. (2) leads to adXw matrix [h=(»;) with
3.,. Restricted to this subsdi,( ,pg) is a diffeomorphism
betweend (3 ,.po) ands,. o gh (PO mTIDZE prm (DL g L)

Let us now derive the Jacobian mati¢®d,,(z ,p,) of Y= gpn~ W1t '
the embedding functionb,( ,py) with respect to a point (A9)

with U,-W,- V! being the singular value decomposition of
Di”q)n(zg ypO)-

Dyn®y(ZE,po) T

0 ] (A8
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All entries 72’1- in the first row ofI",, are zero since the first ap UPOEE of the system has been determined by a standard
n ; A
component ofz" in Eq. (2)_does hot depend on pre_cedlng Newton algorithm and the corresponding linearizatiétls
parameter values. To obtain the second component iiq. d b" via the variational equations. As the measurement
| preceding parameter values are necessary and thus th gd o \ €q ' ; .
unction h we use the displacement of the oscillator, i.e.,

exist] nonzero entries in the second rowlIof. In general, a N , .
the y/"; are nonzero foi=2,...d andj=1,...,(—1)l. h(z") =x"=x(to+ nAt). The dynamics of the system is re-
They ‘are given by constructed withd=3 time delay cooordinates and a delay
|=10. The valuesd=3 and r=10At are obtained by the
41 =Vh. (An—(i—1)|)—1' . .(An—w—lﬁ-j)—l. pn-w-1+j integral local deformatic_m method of Bulzug a_nd Pfigga].
i (A.lo) To extract the mapping&” we numerically integrate the
system 100 000 periods and record in each seclign
The Jacobian matrix of the inverse embedding proces§'= 100 nearest-neighbor pointSi of z¢ and the following
¥ -1(y") is now related to the Jacobian matiDgn\Ifn(QE) points 2™ . In a first attempt one may try to estimate the

T ) ~n ) mappingsA" from a least-squares fit using the relation
again via the pseudomver&;nllfn(yF)“. For a numerically

stable determination dD;»W ,(yR)* it is appropriate to use oz I=A"- 57, (B1)
the relation with 62"+1=2""1-22"1 and §2"i=2"—2}. To realize
- - that this attempt is not optimal, we remember that the map-
) Dyn®@n(y)*  —Dyp®y(yp)*- T pings A", which are represented tx d matrices, describe
Dy n(y)* = 0 1, ' the linearization of the dynamics from ttédimensional

. o
(A11) tangent space‘EZEQDn(En,po) embedded iR to the tangent

spacesTZr;H(I)nH(inH,po) embedded iRY. Thus, for an
optimal estimation it is necessary that the difference vectors
6z and 62" lie in the tangent spac€n®,(2y.Po) and

which follows from Eqg. (A8) because the product
DynWo(YR)# - Dyn o(YR) gives the identityly . )

Having determined the quantiteDy W, (yg) and
D H(yR) =D, (y) ¥, we finally consider Eq(A5
once ;g(gi;)_ Talzingni(r)]/tFo) account E(()Sl*.l) (A2) (AS?(anzzl 52" are not infinitesimal and the" and z"*! lie in
(A11), we obtain the relations given in Eq#&\1). Having the ~ Pn(Zn.Po) and ®y.1(%n11,Po), which generally have a
explicit expressions fof',, and D+ 1®,,, (2%, po) [EGs. curvature in%,, and¥,, ;. Therefore,6z"i and §z"i"* of the

) < A m nearest-neighbor points are not restricted to a
(A6) and(AlO)] as .a.funcnon oWh, A%, andb" in 'mlnd,. Eq_. d-dimensional subspace as they should be in the ideal case of
(A1) gives an explicit formula to calculate the linearizations

in th beddi inifinitesimal distances.
In the embedding space. To eliminate these extra dimensions that enter due to the

curvature of®(2,,,po) and®,.1(31+1,Ps) We introduce
projectionsII,» andIln+1 that project the differencedz";
OF THE LINEARIZATIONS IN THE EMBEDDING F F

SPACE FROM MEASUREMENTS gnd@z“i” onto the corresponding tangent spaces. The pro-
jection HZE can be estimated using the singular value decom-
The relation given in Appendix A can be used to deter-__ .. t . ny oy T 5
mine the linearizations in a time delay embedding when thé)OSItIOnUn Wy Vy Of the matrix (62, . ... ,6z'm) " of near

: n : ) .
corresponding ones in the physical state space are accessib‘?ec’.t neighbors ofzg The singular values of this matrix

For example, if the equations of motion are given by anmeasure the extension of the nearest-neighbor points in the

di diff il ion then the li i atioh® and direction of the corresponding singular vectors, which are the
ordinary differential equation then the linearizatiohs an columns of the orthogonal matri¥,,. Assuming a suffi-

b" can be obtained by numerically integrating the equationgiently small neighborhood, the nearest-neighbor points are
of motion together with its variational equatiof2]. With  mainly spread in the direction of the tangent space. Thus the

the relation of Appendix A, the linearizatiods' andb™" in  tangent space is spanned by the directions corresponding to
the embedding space can then easily be calculated. Usual

. . . . gﬁea largest singular values, whegeis the dimension of the
in experiments the equations of motion are not known an

thus the linearizations have to be determined solely fronfangent spacé’zg<bn(2n,po). The remaining singular vec-
experimental data. We will now show how we extract thetors are normal to the tangent space, indicating the directions

TZI;HCD,]H(Snﬂ,pO), respectively. But, in general, the

APPENDIX B: DETERMINATION

linearizationsA™ andb™' from two time series. of the curvature of the manifold. So we obtain for the pro-
For that purpose we consider a numerical simulation of dections

Duffing oscillator so that we are ak_JIe to compare the linear- =V, diag(l,...,1,0, ... ,O)~VI,

izations extracted from a time series with the correct ones. F —_—

The double-well Duffing oscillator is given by d

X+ ax—x+x3=y coswt+p, with «=0.15, y=0.3, and
w=1 [23]. According to our notation, a point in the assuming that the singular values are ordered by size. In the
standard Poincare section 3, is given by 2" case that the dimensiahof the tangent space is not known

= (X(to+NAt), X(to+nAL))T, with At=T/N. As in the the method proposed 24,25 can be used to estimatk
bronze ribbon experiment, we ude=64 Poincaresections. Broomhead, Jones, and King show that the directions of the
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0.0044 o FIG. 11. For an UPO of the Duffing oscillator the first compo-
O, 050079 nent b}" of the dependencesb™, i=0,...w=20, and
®, L) . . .
. ,w**mg*** *** ot *etendo, n=1,... N=64 is shown:(a) numerically calculated ones using
»e. © [T¢ .
3 0 14%‘3“*“‘3"%0&“3 T e K x *****ﬁiw Egs.(Alb) and(Alc) and(b) extracted ones using the least-squares
* Kk .
o HelT T fit (B3).
-0.004 1 o
y . T components oA" using Eqg.(B2) could not be distinguished
1 16 32 48 64

n from the solid line of the numerically calculated ones if they
were plotted in Fig. 1@) too. This demonstrates that the use
of the projections in Eq(B2) is necessary to improve the
estimation of the mapping&" from a time series analysis.

In addition to the matriceA", the dependencé®"' on the
control parameter have to be extracted from the analysis of
the experimental data. To do this the system is disturbed
everyAt by a small random parameter perturbatipt’. The
resulting time series then consists of a set of data pairs

FIG. 10. (a) First row (@j,) of the linearizationsA" versus
n=1,... N=64 for an UPO of the Duffing oscillator usirgd=3
time-delay coordinates with time delay=10/64T. The solid lines
indicate the numerically calculated valugariational equations
and relation(Ala)] and the circles the values obtained by a least-
squares fit using Eq(B1). (b) The differencesAaj,=aj
—a comect Of the numerically calculated” and the ones obtained
from a least-squares fit using the projections in 8p) are shown (x%,6pY),(x?,8p?),(x3,6p%), . ...
for the components=1 (&), 1=2 (x), andl=3 (@).

Once again, out of 100 000 periods we record in each section

3., m=300 nearest-neighbor poire& of z} and the succes-
tangent space can be identified by the scaling behavior of thgor pointsz"i**. Since the dynamica" of the system in the
corresponding singular values when the diameter of théeighborhood of the UPO has already been determined we

neighborhood is decreased. use the difference between a vec&r"i*! and A"- 62" to
After the determination of the projections, the mappingdetermine the dependendgk", . .. b™°. They are obtained
A" is estimated using the relation by a least-squares fit using
L SsANitl_ AN, . SN W . ;
Mgya- 0287 =AMl 027 B2) [ps (8201 A% 52%)= 3 bsph'. (B3
=0

instead of Eq.(B1). We investigated with the numerical o . i
simulation of the Duffing oscillator the effect of using the fit The projectionlln+1 is used for the same reason as in Eq.
(B2) instead of Eq(B1). In Fig. 10a) we show the first row (B2). .

of A" versusn resulting from a least-squares fit using Eq. The successful determination of the dependerdgsis

(B1) and from a numerical calculation using the variationalexemplarily demonstrated for the UPO of the Duffing oscil-
equations and the relatigia). As can be seen, the values of lator. Both the numerically calculated first component of
A" differ substantially. This error results from the neglectedb™' and the corresponding values extracted from a perturbed
curvature of the nearest-neighbor points. In contrast to thigime series are shown in Fig. 11. The agreement between the
in Fig. 10b) we plot the differences of the first row of the exact values and the values extracted from a time series is
numerically calculated" with the one obtained by using Eq. clearly visible, but it is not as good as in Fig. 10 where the
(B2) for the fit. The maximal error is less than 0.004, so themappingA" has been determined.
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