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Quasicontinuous control of a bronze ribbon experiment using time-delay coordinates
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We investigate quasicontinuous versions of the Ott-Grebogi-Yorke~OGY! control method in a bronze
ribbon experiment using time-delay coordinates for the reconstruction of the attractor. We apply as quasicon-
tinuous control methods the local control method and the minimal expected deviation method. As is known for
the original OGY method with time-delay coordinates, values of the control parameter at previous times appear
in the linearized dynamics. We discuss two possible ways to derive from this linearization feedback control
formulas. These are the extended state space approach and a modified control requirement that demands
stabilization not in the next time step but afterw11 time steps, wherew is the number of preceding parameter
dependences of the linearized dynamics. We show theoretically and demonstrate in the experiment that for the
quasicontinuous control methods considered in this paper only the modified control requirement shows satis-
fying results in the control experiment.@S1063-651X~97!01502-X#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Since the late 1980s controlling chaotic systems us
methods of nonlinear dynamics has become a very pop
area of research in the nonlinear dynamics community.
problem of controlling chaos was addressed by Lu¨scher and
Hübler @1#, who proposed an open-loop control to force
chaotic system to a desired goal dynamics by adding a
cially designed continuous driving force to the system.
calculate this generally aperiodic force in advance a glo
model of the system has to be available or must be c
structed. Another approach is the feedback control of O
Grebogi, and Yorke, which we address in this paper. O
Grebogi, and Yorke proposed 1990 in@2# to stabilize un-
stable periodic orbits~UPOs! embedded in a chaotic attracto
by tiny time-dependent parameter perturbations. This w
has triggered immense research activities to apply feedb
control to chaotic systems~see@3# and references therein!.
One reason for the attractiveness of the Ott-Grebogi-Yo
~OGY! idea is that it is in principle possible to obtain a
control values of the feedback loop from a careful analysis
a scalar measurement signal. No global model is requi
solely the local dynamics in the vicinity of the unstable or
has to be extracted from the measurement data.

With respect to the applicability of the OGY control a
proach to real-world experiments there have been var
variations and extensions, e.g. the tracking approach
Schwartz and Triandaf@4# to cope with slowly varying pa-
rameters or the simple OPF feedback control@5# to control
very fast experimental systems.

In this paper we want to address and combine the
following modifications of the OGY control. First, in th
original OGY control approach the control frequency w
limited to the frequency of the piercings of the continuo
trajectory through the Poincare´ section of the UPO, as Ott
Grebogi, and Yorke reduced the stabilization of a continu
UPO to the stabilization of the corresponding UPO of t
551063-651X/97/55~3!/2145~14!/$10.00
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Poincare´ mapping. For driven systems, which we consider
this paper, where the Poincare´ section is naturally taken as
section of constant phase of the driving, the maximal con
frequency is thus the driving frequency. If now the instabil
of the UPO is very high then the amplification of measu
ment noise can spoil the feedback control when controll
only once per driving period. Therefore, for experimen
with large instabilities of the UPO quasicontinuous exte
sions of the original OGY control have been introduced
Reyl et al. @6# with the minimal expected deviation~MED!
method and by Hu¨binger et al. @7,8# with the local control
~LC! method. The, in principle, arbitrarily high control fre
quency is obtained by takingN equally spaced Poincare´ sec-
tionsSn per periodT of the driving as control stations. To
achieve stability of the UPO a quasicontinuous OGY cont
thus has to work with the linearizations of the mappi
P(n,n11)5f uSn

Dt , Dt5T/N, which maps a state from th

Poincare´ sectionSn to the next sectionSn11. Now in the
original OGY method the control requirement is based on
eigendirections of the linearized Poincare´ mapping. For the
quasicontinuous control methods the control requirement
to be changed as the eigenvalues of the linearized map
P(n,n11) can have complex eigenvalues. Therefore the M
and LC methods use control requirements that are suited
complex eigenvalues too.

The second modification that we address comes in w
one uses time delay coordinates@9–11# for the reconstruc-
tion of the attractor. In this case the OGY feedback form
has to be modified in the way that also preceding values
the control parameter have to be considered to obtain
actual value of the control parameter@12#. The reason for
this modification is that for delay coordinates the Poinc´
mapping depends not only on the actual control parame
but also on all preceding ones that were changed during
time window tw5(d21)t of the delay vector
(x(t),x(t2t), . . . ,x„t2(d21)t…). For a quasicontinuous
2145 © 1997 The American Physical Society
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control with a control frequency being, e.g., the sampl
frequency 1/Dt, the mappingP(n,n11)5fuSn

Dt will depend on

the lastw5 l (d21) parameter changes withl being the time
delay in units of the sampling time andd the embedding
dimension. We express this dependence aszn11

5P(n,n11)(zn,pn2w, . . . ,pn21,pn). Thus, to stabilize an
UPO by a quasicontinuous OGY control using time-de
coordinates the fundamental equation of the control prob
is given by the linearization ofP(n,n11) having the form

dzn115An
•dzn1(

i50

w

bn,idpn2 i , ~1!

with dzn5zn2zF
n , zF

n being the UPO in sectionSn , and the
linearizationsAn5DznP

(n,n11) and bn,i5(]/]pn2 i)P(n,n11)

around (zF ,p0 , . . . ,p0). Now, to obtain a control formula
one could use the extended state vec
yn5(zn,pn2w, . . . ,pn21) and rewrite the dynamics as

dyn115Cn
•dyn1dndpn

with

Cn5S An bn,w bn,w21
••• bn,1

0 1 ••• 0

0 A � � A

A ••• � 1

0 ••• ••• 0

D
and dn5(bn,0,0, . . . ,0,1)†. For the OGY control with time
delay this was proposed by Romeiraset al. @13# together
with a pole placement technique and later on worked out
realized in numerical experiments by So and Ott@14#. In @15#
Ding et al. report successful control of a magnetoelas
beam experiment using time-delay coordinates and an
tended state space approach. In addition to the use of
extended state space for time-delay coordinates, the wo
@13–15# also generalizes the OGY control requirement in
way that also systems with more than one unstable eige
rections can be controlled with a single control paramete

The attractiveness of the extended state space approa
that at first glance one can use the same control requirem
as for the physical state space without a formal change.
the OGY approach using eigenvalues and eigendirection
the UPO as done in@13–15#, this also works in practice a
the eigenvalues and eigendirections in the delay space
the extended space are related in a very simple ma
@14,15#. However, for the quasicontinuous control metho
considered in this paper, i.e., MED or LC, it turns out th
the use of the extended state space formulation leads
scaling dependence on the units of the control parame
Therefore, for our case we prefer another possibility to
rive a control formula. We require stabilization not fo
zn11 but only for zn1w11 with dpnÞ0 and
dpn115•••5dpn1w50. This control requirement coin
cides with the second modification of the original OG
method in@12# given for time-delay coordinates. While fo
the original OGY method these two approaches, i.e., the
tended state space and the modified control requirement
y
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equivalent, this is no longer the case for the quasicontinu
control approach. In our investigations we discuss this po

Finally, we compare the performance of these two qua
continuous control approaches in a bronze ribbon exp
ment. To test the control methods, all control vectors nee
for control are extracted from the analysis of a scalar m
surement signal. Furthermore, we extend the adaptive o
correction@16# of Doerneret al. to time delay coordinates to
correct the position of the UPO used in the feedback form
during control. In the experiment the modified control r
quirement will show the best result, while the extended st
space approach is not suitable for the control methods
cussed in this paper.

Before we start we want to mention that the control e
periment presented in this paper is not the first realization
a quasicontinuous control using time-delay coordinates. R
et al. apply the MED method in a NMR-laser experime
using time-delay coordinates@6#. However, they do not con
sider the dependence on preceding values of the contro
rameter. de Korteet al. use the local control method an
time delay coordinates to control an experimental driv
pendulum@17#. In their experiment they only consider th
dependence of one preceding parameter value as they
only four control stations per period of the driving and a tim
delay window (d21)t, which is smaller thanT/4. Further-
more, in their control experiment they apply the original co
trol requirement of the local control, i.e., stabilization in th
next Poincare´ section, without modifying the control require
ment as we do.

Our paper is now organized as follows. In Sec. II w
justify theoretically the fundamental equation~1! for the lin-
earized dynamics in time delay embedding space when q
sicontinuous control is applied. In Sec. III we first briefl
recall the quasicontinuous OGY control in a physical st
space. Then we give the two possible extensions for tim
delay embedding, i.e., the extended state space approac
the modified control requirement. After describing th
bronze ribbon experiment in Sec. IV, we report, in Sec.
our control experiments using quasicontinuous control
embedding space. Our results are summarized in Sec. V
Appendix A an explicit relation between the linearizations
the physical state space and the corresponding ones in
embedding space is given. In Appendix B we discuss h
the linearizations in the embedding space are obtained f
experimental data and how to avoid errors that are due
using for the fits nearest-neighbor points with finite distan
to the UPO for which the curvature of the attractor in t
embedding space can no longer be neglected.

II. LOCAL DYNAMICS IN THE TIME-
DELAY EMBEDDING

In this section we want to give some theoretical underp
ning to the fundamental equation~1! for quasicontinuous
control with time delay coordinates that results from the d
pendence of the flow mappingP(n,n11)5f uSn

Dt on the control

parameter. To start with our argumentation let us denote w
Ŝn theN5T/Dt Poincare´ sections of constant phase of th
driving in the physical state space. Letpn5p01dpn be the
value of the control parameterp when the system goes from
section Ŝn to Ŝn11. Thus the flow mappingP̂(n,n11) in
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55 2147QUASICONTINUOUS CONTROL OF A BRONZE RIBBON . . .
the physical state space that maps a stateẑn in Ŝn to a state
ẑn11 in Ŝn11 can be expressed as

ẑn115P̂~n,n11!~ ẑn,pn!

or, more generally, the mappingP̂(n,n1k) from Ŝn to Ŝn1k
has to be written as

ẑn1k5P̂~n,n1k!~ ẑn,pn,pn11, . . . ,pn1k21!.

Note that we always use a caret for the quantities referrin
the dynamics in the physical state space in order to dis
guish them from the corresponding ones in the time de
embedding space.

Now, for the reconstruction of the attractor we want
use time delay coordinates. For a driven system it is app
priate to retain as additional coordinate in the embedd
space the phase of the driving. Doing so we can introd
N successive Poincare´ sectionsSn , n51, . . . ,N in the
embedding space that exactly correspond to the sect
Ŝn in the orginal state space. For an embedding dim
sion of d11 a point znPSn is then given by
zn5(xn,xn2 l , . . . ,xn2(d21)l)†, wherexn5x(t01nDt) is an
accessible measurement signal andt5 lDt an appropriately
chosen time delay. This measurement process can be m
ematically expressed as a scalar functionh on the physical
state space, i.e.,xn5h( ẑn). For shortness of our formulas
we assume here that the measurement does not depen
the phase of the driving. According to Takens’s theor
@10,11#, for an appropriately chosen time delayt and a
sufficiently high dimensiond there exists a smooth
invertible embedding functionFn , i.e., zn5Fn( ẑ

n),
which maps points ẑn from the Poincare´ section Ŝn
to points zn in the time-delay Poincare´ sectionSn . This
function, which is given by zn5Fn( ẑ

n)
5„h( ẑn),h( ẑn2 l), . . . ,h( ẑn2(d21)l)…†, is closely related to
the dynamics of the system and thus dependent on prece
parameter values when the control is applied. To write
statesẑn2 j l , j51, . . . ,(d21), as a function ofẑn the inverse
P̂(n2 j l ,n)21

of the mappingP̂(n2 j l ,n) has to be used. Taking
into account thatP̂(n2 j l ,n) depends on the parameter valu
pn2 j l , . . . ,pn21, the embedding functionFn can be written
as a function ofẑn as

zn5S h~ ẑn!

h„P̂~n2 l ,n!21
~ ẑn,pn2 l , . . . ,pn21!…

h„P̂~n22l ,n!21
~ ẑn,pn22l , . . . ,pn21!…

A

h„P̂~n2w,n!21
~ ẑn,pn2w, . . . ,pn21!…

D ~2a!

5Fn~ ẑ
n,pn2w, . . . ,pn21!. ~2b!

Thus, for quasicontinuous control the embedding funct
Fn depends not only onẑn, but also on the las
w5(d21)l parameters. For an abbreviation we wr
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zn5Fn( ẑ
n,pn21), with pn215(pn2w, . . . ,pn21), and for

the unperturbed dynamics zn5Fn( ẑ
n,p0), with

p05(p0 , . . . ,p0)PRw.
This dependence ofFn on the preceding control param

eters has direct impact on the flow mappingP(n,n11) in the
time delay embedding space that mapszn to zn11. Starting
with zn115Fn11( ẑ

n11,pn), ẑn115P̂(n,n11)( ẑn,pn), and
ẑn5Fn

21(zn,pn21) one can expresszn11 as a function of
zn as

zn115Fn11~P̂
~n,n11!

„Fn
21~zn,pn21!,pn…,pn! . ~3!

But this is the flow mappingP(n,n11), which, as a conse
quence, depends on thew5(d21)l preceding values of the
control parameter and the actual valuepn, i.e., we can write

zn115P~n,n11!~zn,pn21,pn!. ~4!

This finally leads directly to the fundamental equation fo
quasicontinuous OGY control for time delay coordinate
which is the linearization ofP(n,n11) around the UPOzF

n and
the control parameterp0

dzn115An
•dzn1(

i50

w

bn,idpn2 i ,

with dzn5zn2zF
n , An5DznP

(n,n11)(zF
n ,p0 , . . . ,p0), and

bn,i5(]/]pn2 i)P(n,n11)(zF
n ,p0 , . . . ,p0).

In Appendix A we support this result by giving an explic
relation between the linearizationsÂn5D ẑnP̂

(n,n11) and
b̂n5(]/]pn)P̂(n,n11) in the physical state space and the li
earizationsAn andbn,i in the time-delay embedding space.
Appendix B we confirm this relation further in a numeric
experiment of a Duffing oscillator with a known measur
ment functionh. In addition, we describe the pitfalls tha
have to be avoided when determiningAn andbn,i from near-
est neighbors whose finite distances to the UPO already
perience the curvature of the attractor in the embedd
space. As a remedy we propose the projection to the co
sponding tangent spaces. In the simulation of the Duffi
oscillator we demonstrate that this projection helps to i
prove the determination ofAn andbn,i considerably.

III. QUASICONTINUOUS CONTROL
USING TIME-DELAY COORDINATES

In this section we first briefly recall the quasicontinuo
control in a physcial state space. We give a unified formu
tion for the local control method and the minimal expect
deviation method. Both methods are slightly changed co
pared to their first publication. After the presentation of t
explicit feedback formulas we describe two different ways
obtain control formulas when a time delay embedding
used. These are the extended state space approach
modification of the control requirement. In fact, for the OG
control method both possibilities have been studied. In@13–
15# the extended state space approach is used for delay
tors in combination with an extension of the OGY meth
for more than one unstable direction. In@12,18# the modified
control requirement is given for the original OGY metho
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While for the original OGY method with one unstable eige
direction both approaches yield the same control formula,
the quasicontinuous control methods considered here th
sulting control formulas differ substantially, as we will sho

A. Quasicontinuous control in physical state space

Quasicontinuous control for a driven system refers to
adjustment of the control parameter everyDt5T/N when-
ever the trajectory intersects one of theN equally spaced
Poincare´ sections. As in Sec. II, we denote withP̂(n,n11) the
flow mapping in the physical state space that maps a s
ẑn to a stateẑn11. The starting point of a quasicontinuou
OGY control is the linearization ofP̂(n,n11) around the UPO
ẑF
n andp0,

d ẑn115Ân
•d ẑn1b̂ndpn, ~5!

with

Ân5D ẑnP̂
~n,n11!~ ẑF

n ,p0!

and

b̂n5~]/]pn!P̂~n,n11!~ ẑF
n ,p0!.

Now, already in two dimensions the linearizationÂn of the
mappingP̂n can have complex eigenvalues. Therefore,
OGY control condition that the next stateẑn11 falls on the
stable eigendirection ofÂn, which is formalized as
f̂ u
n
•d ẑn1150, with f̂ u

n being the contravariant unstable e
genvector, cannot be used anymore. The LC method and
MED method solve this problem by posing a control requi
ment that does not depend on the eigendirections ofÂn.

In the local control method Hu¨bingeret al.use the singu-
lar value decomposition~SVD! of Ân in order to formulate a
control condition. LetÂn5Ûn

•Ŵn
•V̂n† denote the singula

value decomposition ofÂn with the orthogonal matricesÛn

andV̂n having as column vectorsûi
n andv̂i

n and the diagona
matrix Ŵn with positive entriesŵi

n , the singular values
Having calculated the SVD, the action ofÂn can be de-
scribed asÂn

• v̂i
n5ŵi

nûi
n . Thus the orthonormal basis$v̂i

n% is
mapped on the orthonormal basis$ûi

n% with an additional
stretching or shrinking by the singular valuesŵi

n . Having the
singular values ordered by sizev̂1

n is the unstable direction o
Ân ~here we assume that only one unstable direction exis!.
In the local control method one requires that the project
of d ẑn11 on the unstable directionv̂1

n11 is diminished. Thus,
for perfect stabilization the control requirement of the loc
control could be written as

v̂1
n11†

•d ẑn1150. ~6!

In the minimal expected deviation method Reylet al. use
another control requirement. They require that the dista
id ẑn11i to the UPO inŜn11 is minimized. In order to find
this minimum the derivative ofid ẑn11i2 with respect to
-
r
re-

e

te

e

he
-

n

l

e

dpn is calculated and its zeros have to be determined. T
calculation leads to the condition

b̂n†•d ẑn1150. ~7!

Thus, also the control requirement of MED can be expres
in the way that the projection ofd ẑn11 on a special direction
vanishes. If one compares Eqs.~6! and ~7! the control re-
quirement of the LC method and the MED method diffe
only with respect to the special choice of this direction.

To proceed with the derivation of an explicit control fo
mula let us call this direction for a momentĥn. As was said,
the most pretentious control requirement would
ĥn†•d ẑn1150. In the paper of Reylet al. this maximal con-
trol requirement is used forN54 control stations per period
But if the numberN of the control stations increases the tim
of the control actionDt5T/N decreases. If the maximal con
trol requirement were retained the small control timeDt
would lead to a large control signaldpn. In order to avoid
large control signals for high control frequencies Hu¨binger
et al. propose to weaken the control requirement. In the
method they introduce a decay factor 12r in the control
requirement@7#. We follow this idea, but formulate the re
duced control condition in a slightly different way, whic
leads to better control results. We require that the applica
of the control signaldpn diminishes the projection o
d ẑn11 on ĥn by a factor 12r compared to the one tha
d ẑdpn50

n11 would have if no control were applied, i.e.,

ĥn†•d ẑn115~12r!ĥn†•d ẑdpn50
n11 . ~8!

Inserting Eq.~5! into Eq. ~8! gives the explicit control for-
mula for the quasicontinuous control

dpn52r
ĥn†•Ân

ĥn†•b̂n
•d ẑn, ~9!

with ĥn5 v̂1
n11 for the LC method andĥn5b̂n for the MED

method. With Eq.~9! we have the general feedback formu
for quasicontinuous control in physcial state space if the
earization ofP̂(n,n11) are given by Eq.~5!.

B. Control formula using extended states

Now we proceed with the quasicontinuous control in t
time delay embedding space when the starting point of
derivation of the feedback formula is the linearization

dzn115An
•dzn1(

i50

w

bn,idpn2 i .

We start with the extended state space approach@13–15#. An
extended state is given byyn5(zn,pn21)†. Thus with the
extended states the preceding parameter depende
pn215(pn2w, . . . ,pn21) are considered as state variable
Doing so, the linearized dynamics~1! can be written as

dyn115Cn
•dyn1dndpn, ~10!

with
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Cn5SAn bn,w bn,w21
••• bn,1

0 Nw
D , ~11a!

thew3w nilpotent blockNw

Nw5S 0 1 ••• 0

A � � A

A ••• � 1

0 ••• ••• 0
D ~11b!

and

dn5~bn,0,0, . . . ,0,1!†. ~11c!

Note that Eq.~10! has the same form as the linear appro
mation~5! in the physical state space. Therefore, the con
requirement can be chosen in complete analogy to Eq.~8!.
This leads to the control formula

dpn52r
hn†•Cn

hn†•dn
•dyn, ~12!

with hn5v1
n11 the singular vector corresponding to the lar

est singular value ofCn11 for the LC method andhn5dn for
the MED method. For the local control method we assu
that the largest singular valuew1

n11 of Cn11 is the only
singular value that is larger than 1.

From a formal point of view, the problem of quasico
tinuous control with time delay coordinates could be
garded as solved. But, as was already mentioned in the
troduction, the at first glance simple and convincing use
the extended states leads, for the quasicontinuous co
methods considered here, to an undesirable dependenc
the units of the control parameterp. We demonstrate this by
showing that the control formula~12! depends on the scalin
of the parameterp. To do this we replace all parameterspn

by pn/s and all vectorsbn,i by sbn,i . Taking the structure of
yn5(zn,pn21)† andCn, dn in Eq. ~11! into account, we ob-
tain in the case of the MED method (hn5dn) the following
expression for Eq.~12!:

dpn52r

bn,0†•FAn
•dzn1(

i51

w

bn,idpn2 i G
bn,0†•bn,01s22 . ~13!

Due to the appearance ofs22 in the denominator, this con
trol formula is not invariant with respect to the scaling fac
s. A similar result is obtained for the LC method in whic
the scaling dependence is caused by the singular value
composition ofCn. The deeper reason for this is that, a
though the equation~10! for the linearized dynamics in th
extended state space is invariant under a scaling of the
trol parameter, the control requirements@Eqs.~6!, ~7!, or ~8!#
of the LC and MED methods are not invariant under a r
caling ofp if they are formulated in the extended state spa
For the MED method this can directly be seen insertingdn

anddyn11 in the control requirement~7! or ~8!. For the LC
method one has to have in mind that the control requirem
~6! is based on the SVD ofCn11. But a rescaling ofp can be
-
l

e

-
n-
f
rol
on

r

e-

n-

-
.

nt

viewed as a coordinate transformation and, as is well kno
the SVD is not invariant under a coordinate transformati
Thus, for both quasicontinuous methods the use of an
tended state space shows an undesirable dependence o
units of the control parameter. The control experiments
Sec. V will show that this dependence indeed causes a br
down of the control for certain choices of the scaling para
eter s. In contrast to this, the extended state approach
@13–15# is combined with a control requirement based up
eigenvalues of the controlled problem@13# or the eigendirec-
tions of the UPO@14,15#. As the eigenvalues are invarian
under a transformation of coordinates, no problem ari
with the pole placement technique in@13#. The use of the
eigendirections of the UPO in@14,15# for the control require-
ment does not lead to the above-discussed problem ei
This is so because the eigendirections of the linearized P
carémappingA and the associated matrixC in the extended
state space obey a very simple relationship@14,15# that is
preserved under a coordinate transformation. If we den
with ei

u andei
s the unstable and stable eigendirections of

d3d matrix A, then the unstable eigendirections of th
(d1w)3(d1w) matrix C are given by (ei

u,0, . . . ,0)†

PRd1w and the stable directions by (ei
s,0, . . . ,0)†PRd1w

and an arbitrarily chosenw-dimensional basis of the nul
space ofCw @15#. This relationship between the eigendire
tions ofA andC is not affected by a change of scales of t
control parameterp. Therefore, the use of the extended sta
space works fine for the control requirements used in@13–
15#.

C. The modified control requirement

An alternative way to derive a feedback formula starti
from the linearization~1! is to modify the control require-
ment. For the original OGY method with time delay coor
iantes this was done in@12,18# for the special case that onl
one preceding parameter dependence appears in the li
ization. The control requirement was modified in the w
that the system had to stabilize only in two control ste
i.e., for zn12, for an appropriately chosen parameter pert
bation dpnÞ0 anddpn1150. We generalize this modified
control requirement for generalw and the linearization~1! of
the quasicontinuous control. Because the parameter v
pn influences the trajectoryzn11,zn12, . . . until zn1w, we
require that the system stabilizes only afterw11 time steps
for an appropriately chosen parameter perturbationdpnÞ0
without further control interventions in between, i.e., t
modified control requirement is

hw
n †
•dzn1w115~12r!hw

n †
•dzdpn50

n1w11 , ~14a!

dpn115dpn125•••5dpn1w50. ~14b!

The condition~C14a! is chosen in complete analogy to E
~8! with dzdpn50

n1w11 denoting the distance vector tozF
n1w11 ,

which zn1w11 would have if no control at all~i.e.,
dpn50) were used. The directionhw

n depends onw and is
chosen below in such a way that the LC method and
MED method are obtained.

To derive an explicit control formula,dzn1w11

and dzdpn50
n1w11 in Eq. ~14a! have to be expressed as
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function of the actual statedzn. This is done by using the
linearizations Aw

n5DznP
(n,n1w11)(zF

n ,p0 , . . . ,p0) and
bw
n,i5(]/]pn2 i)P(n,n1w11)(zF

n ,p0 , . . . ,p0) and taking the
condition ~14b! into account. One obtains

dzn1w115Aw
n
•dzn1(

i50

w

bw
n,idpn2 i . ~15!

The matricesAw
n are given byAw

n5An1w
•••An. The vectors

bw
n,i can be recursively calculated usingb0

n,i5bn,i and

bj
n,i5H An1 j

•bj21
n,i for j. i

An1 j
•bj21

n,i 1bn1 j ,i2 j for j< i .

Inserting Eq.~15! in Eq. ~14a! yields the desired contro
formula

dpn52r

hw
n †
•FAw

n
•dzn1(

i51

w

bw
n,idpn2 i G

hw
n †
•bw

n,0 . ~16!

For the LC method, the directionhw
n is given by

hw
n5v1

n1w11 , where v1
n1w11 is the singular vector of

An1w11, which refers to the direction of maximal stretchin
For the MED method the direction has to be chosen
hw
n5bw

n,0 in order to minimize the deviation of the trajecto
from the desired orbit in sectionSn1w11. Both possible di-
rections lead to a control formula that does not depend o
scaling factor of the control parameter, in contrast to
control formula~12! using extended states. The simple re
son for this is that not only the linearized dynamics~1!, but
also the control requirement~14a! with Eq. ~15! is not af-
fected by a rescaling ofp.

Note that in the formulation of the modified control r
quirement (dpnÞ0 and dpn115•••5dpn1w50) and the
consecutive derivation of the control formula~16!, the pa-
rameter perturbations are in principle calculated u
dpn1w. In the experimental realization, however, whe
noise is always present, we calculatedpn at every control
stepn once again in order to use the possibility to correct
parameter perturbation using the actual measurements o
system.

Now we want to test the performance of the two differe
control formulas~12! and ~16! in a mechanical experimen
For the control experiments all control vectors needed for
control formulas are extracted from the analysis of a sc
measurement signal. Before the results of these control
periments are reported we first describe the experime
setup.

IV. THE BRONZE RIBBON EXPERIMENT

A. Experimental setup

The experiment was stimulated by the magnetoela
beam experiment of Moon@19#. A detailed description can
be found in @8#. The experiment is a horizontally cantile
vered elastic bronze ribbon equipped with two small perm
nent magnets~see Fig. 1!. The beam is located in an inho
mogeneous magnetic field. To drive the system two coils
s
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placed around the free end of the beam and supplied with
ac voltageU(t)5UAsin(2p/T)t1p with UA50.6 V and the
driving periodT51 s. The offset voltagep is used as the
control parameter, which can be adjusted via a 12-bit re
lution digital-analog converter from a 486 personal compu
~PC!.

As the measurement signalx(t) we use the voltage signa
of a wire strain gauge that is related to the deflection of
vibrating beam. Using a 12-bit resolution analog-digital co
verter the voltage signal is transferred to the PC. Setting
sampling timeDt of the converter toT/64, we introduce
N564 Poincare´ sections for the control.

B. Determination of the control vectors

With the sampled measurement signalxn5x(t01nDt)
the dynamics of the system is reconstructed using two t
delay coordinates (xn,xn2 l) and the phase of the periodi
driving UAsin(2p/T)t. The use of two time-delay coordinate
with a time lagl55 is suggested by the integral local defo
mation method of Buzug and Pfister@20#, which we applied
in order to determine optimal parameterst and d for the
time-delay embedding.

When the control parameter is set top0520.2 V a cha-
otic attractor with correlation dimensionD2'2.75 in the em-
bedding space is found~Fig. 2!. Embedded in the chaotic
attractor, four period-one UPOs@Figs. 3~a!–3~d!#, one
period-two UPO@Fig. 3~e!#, and one period-three UPO@Fig.
3~f!# are detected using the method of best recurrent po
described in@8#. All UPOs are also found using three tim
delay coordinates or using differential coordinates, i
zn5(xn,ẋn), to reconstruct the dynamics of the beam. F
differential coordinates successful control and tracking of
UPOs are already described in@8# and @21#.

The linearizationsAn of the mappingsP(n,n11) around an
UPO are extracted from the dynamics of the neare
neighbor points in the time-delay embedding space. Fr

FIG. 1. Experimental setup of the chaotic bronze ribbon. A ho
zontally cantilevered bronze beam equipped with two small per
nent magnets is located in an inhomogeneous magnetic field.
coils are placed around the free end of the beam and are sup
with an ac voltageU(t)5UAsinvt1p, with UA50.6 V and
T52p/v51 s. The offset voltagep is used as control paramete
Measurements are taken with a wire strain gauge at the fixed en
the beam to obtain a voltage signalx related to the deflection of the
beam.
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50 000 driving periods we extract 300 nearest-neigh
pointszn in each Poincare´ section to fit the matrixAn to the
model dzn115An

•dzn. To obtain the dependencesbn,i on
the control parameter we record a second time series~again
50 000 driving periods!, where the control parameter is di

FIG. 2. Chaotic attractor for the bronze ribbon f
p0520.2 V. 50 000 pointszn5(xn,xn2 l) are shown in the Poin-
carésectionS1 with time delayt55Dt, Dt5T/64. The correlation
dimension of the attractor in the Poincare´ section is calculated a
D2'1.75.

FIG. 3. Four unstable period-one orbits~a!–~d!, the unstable
period-two orbit~e!, and the unstable period-three orbit~f! of the
bronze ribbon, which have been detected by analyzing best re
rent points forp0520.2 V. They are shown in thex(t)-x(t2t)
plane witht55Dt.
r
turbed at each time step by a random perturbationdpn

P@20.07 V,10.07 V#. These perturbations do not chang
significantly the global dynamics of the system as Fig
compared with Fig. 2 shows. Now the vectorsbn,i are fitted
to the equationdzn112An

•dzn5( i50
w bn,idpn2 i using the

matrix An and 300 nearest-neighbor points. A more detai
description for the determination of the linearizations
given in Appendix B.

V. CONTROLLING THE BRONZE RIBBON

Before we discuss the control experiments to compare
performance of the quasicontinuous control for time de
coordinates based on the formulas~12! and~16! we first want
to describe the adaptive orbit correction of Doerneret al.
@16#. We always use this procedure in order to redeterm
the position of the reference UPOzF

n used in the feedback
formula before we start with the actual control experiment
question.

A. The adaptive orbit correction

This procedure improves the control performance of
ery OGY-based control method considerably because it h
to deal with drifting parameters that affect the true positi
of an UPO. As Schwartz and Triandaf already reported
the original OGY method in@4#, an errror in the determina
tion of the UPO leads to a systematic deviation of the av
aged control signal from zero. For the quasicontinuous c
trol Doerneret al. observed that a difference between t
true UPOzF,true

n of the system and the orbitzF
n used in the

feedback control formula leads to an almost periodic traj
tory zn'zn1N and an almost periodic control signa
dpn'dpn1N ~Fig. 5!. The adaptive orbit correction enable
one to calculate a new estimate ofzF,true

n during control by
exploiting the periodicity ofzn anddpn.

We describe the adaptive orbit correction in the contex
quasicontinuous control using time-delay coordinates. T
basic idea is the following. As the controlled trajectoryzn is

ur-

FIG. 4. Poincare´ section of the chaotic attractor when the syste
is disturbed in each time step by a small random perturbationdpn

P@20.07 V,10.07 V#. This perturbed attractor should be com
pared with the unperturbed attractor in Fig. 2.
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still close to the true UPOzF,true
n and the parameter perturba

tionsdpn are small, in each sectionSn ,n51, . . . ,N, zn and
dpn have to fulfill the linearized dynamics

zn112zF,true
n11 5An

•~zn2zF,true
n !1(

i50

w

bn,idpn2 i , ~17!

with An5An1N, bn,i5bn1N,i , andzF,true
n 5zF,true

n1N . For perfect
periodicity of dpn andzn this set ofN vector equations can
be solved with respect tozF,true

n to obtain a new gues
zF,new
n of the true orbitzF,true

n . In the case of time-delay co
ordinates it is not necessary to solve the whole set oN
vector equations~17!. Because of the special structure
a time-delay vector zn5(xn,xn2 l , . . . ,xn2w)†, already
the first component of each of theN equations suffices
to determine a whole time delay UPOzF,new

n

5(xF,new
n ,xF,new

n2 l , . . . ,xF,new
n2w )†. Thus, for time-delay coordi-

nates one solves the set ofN scalar equations

xn112xF,true
n11 5 (

i50

d21

a1,i11
n ~xn2 i l2xF,true

n2 i l !

1(
i50

w

b1
n,idpn2 i , n51, . . . ,N ~18!

with respect to xF,true
n to obtain a new estimate

xF,new
n ,n51, . . . ,N, to build zF,new

n . Of course, this holds
only for perfect periodicity ofdpn andxn. Because of mea
surement noise in experiments, one averagesdpn and xn

over some periods~in the experiment we use four period!
and inserts the averages^dpn& and ^xn& instead ofdpn and
xn into the set of equations~18!. Nevertheless, due to error
of An and bn,i we cannot expect that the new estima
zF,new
n gives already the correct value ofzF,true

n . Therefore,
we use a weighted averagezF

n(x)5xzF,new
n 1(12x)zF,old

n ,
xP@0,1#, in the feedback control. Starting withx50, we
increasex slowly until no further decrease of the contr
signal can be achieved. Using the orbit resulting from op
mal value ofx, the next correction step is repeated. Aft

FIG. 5. Quasicontinuous control of UPO 1 usingzF
n extracted

from the analysis of best recurrent points. Twenty periods of
controlled orbits are recorded. In the upper part the differen
dxn5xn2xF

n between the desired orbitxF
n used in the feedback

control and the observed trajectoryxn and in the lower part the
applied parameter perturbationsdpn for successful control are
shown versusn for 20 periods of control.
i-

some repetitions the applied averaged control signal^udpu& is
minimized. This procedure is shown in Fig. 6 for the perio
three orbit@Fig. 3~f!#. As can be seen with this procedure, t
adaptive orbit correction leads to a reduction of the avera
control signal by a factor of about 7. Depending on the init
error in the determination of the true UPO, we also obser
a reduction factor 10.

B. Quasicontinuous control with time-delay coordinates

Before we report the results of our control experimen
we mention the additional control rule that we always use
our control experiments. To stabilize the UPO the cont
signaldpn calculated from Eq.~12! or ~16! is only applied
when its magnitude is less than a maximal allowed param
perturbationdpmax. In addition, control is also applied i
idzni is less than a maximal distancedzmax, but the calcu-
lated parameter perturbation exceedsdpmax @8#. In this case
we only restrict the control todpmax and give the control
signal the sign of the calculateddpn. This additional control
rule ensures that control is never suspended if the syste
close enough to the UPO.

To study the performance of the quasicontinuous con
in the mechanical experiment we concentrate on the per
one orbit of Fig. 3~a!, which we call UPO 1. The results d
not vary significantly from the other UPOs.

First, we try to stabilize UPO 1 using the control formu
~12! making use of the extended states. As was already
cussed in Sec. III B for the quasicontinuous control metho
~LC or MED!, the control formula~12! depends on the
choice of the units of the control parametersp. To investi-
gate the effect of this dependence in the experiment we
place all parameterspn by pn/s and the corresponding vec
tors bn,i by sbn,i and apply the local control using~12! for
different scaling factorss. In Fig. 7 we show the experimen
tal result for the local control method usings520,
s5200, s52000,s520 000, ands5200 000. As can be
seen, successful control can only be achieved fors5200 and
s52000. Furthermore, the calculated control signal clea
depends on the scaling factors. We did the same experimen
for the MED method using the extended states. As for

e
s

FIG. 6. Repeated orbit correction of the period-three or
shown in Fig. 3~f! beginning with the orbits extracted from th
analysis of recurrent points: In the upper part the stroboscopic m
surementx(kT) in the Poincare´ sectionS1 and in the lower part the
averaged control signal̂udpnu& over one period of the UPO ar
shown for 1500 periods.
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55 2153QUASICONTINUOUS CONTROL OF A BRONZE RIBBON . . .
LC method, only for certain values ofs, however, different
from the ones for the LC experiment, could control
reached also with the MED method. There is no simple r
how to find the right values ofs. We observe that the ap
propriate value depends on the method and even on the
rametersd,t of the time-delay embedding. The best choi
with respect to control cannot be predicted in advance. T
using MED or LC control in the extended state space
quires a blind search in the control experiment for the ri
units of p.

Next we want to investigate the performance of the q
sicontinuous control if one uses the control formula~16! that
results from the modified control requirement~14!. Here one
requires that the system stabilizes only afterw11 time steps.
For the time delay embedding withd52 andl55 the win-
dow lengthw5(d21)l is 5 and therefore the stabilizatio
has to be required after six time steps. To demonstrate
the modified control requirement~14! is indeed necessary w
apply local control to UPO 1 using a feedback control fo
mula that results if one requires stabilization af
j51,2, . . . ,until nine time steps. Figure 8 shows the res
of this experiment. It is clearly visible that forj51 and
j52 no successful control is achieved. The UPO can
stabilized for j>3, but the control signal is minimized fo
j57. A further investigation shows that the averaged d
tance between the UPO and the trajectory of the system
a minimum for j55. Both results confirm our theoretica
choice j5w11. With this choice we could stabilize a
UPOs of Fig. 3 using the MED or the LC method in Eq.~16!.
In Fig. 9 we show an example of a successful control exp
ment using the LC method. Every 500 driving periods
switch from one UPO to the next one. As can be seen,
transient time to stabilize the next UPO is always very sh
We did the same experiment for the MED method. Th
was no qualitative difference between the MED or the
method as long as one used the modified control requirem
with j5w11.

VI. SUMMARY AND CONCLUSIONS

In a bronze ribbon experiment we have implemented q
sicontinuous versions of the OGY control method us

FIG. 7. Local control of UPO 1 using extended states w
dzmax50.1, dpmax50.12 V, andr50.15. Starting with the scaling
factor s520, every 500 driving periods the scaling factors is
increased by a factor 10. In the upper part the stroboscopic m
surementx(kT) in the Poincare´ sectionS1 and in the lower part the
applied control amplitudêudpu& averaged over one period of th
driving are shown as functions of the periodk.
e
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time-delay coordinates for the reconstruction of the attrac
With quasicontinuous we refer to control methods with,
principle, arbitrarily high control frequencies that are esp
cially advantageous for highly unstable systems. In
bronze ribbon experiment we apply as quasicontinu
methods the local control method and the minimal expec
deviation method. Both methods achieve a high control f
quency by introducing several Poincare´ sections per period
of the driving. As is known for the original OGY method, fo
time delay coordinates the feedback law has to be modi
in a way that also preceding values of the control param
have to be included in the control formula. For a quasico
tinuous control with high control frequency being, e.g., t
sampling frequency 1/Dt, there arew5 l (d21) preceding
parameter

a-

FIG. 8. Local control of UPO 1 using the modified control r
quirement withdzmax50.1,dpmax50.12 V, andr50.15. In the up-
per part the stroboscopic measurementx(kT) in the Poincare´ sec-
tion S1 and in the lower part the applied control amplitude^udpu&
averaged over one period of the driving are shown as function
the periodk. From 0 to 499 the stabilization is demanded af
j51 time step; afterward the valuej is increased every 500 period
by 1.

FIG. 9. Local control ~modified control requirement! of all
UPOs shown in Fig. 3. The magnitude of the unstable eigenva
of the period-one UPO and of the period-two orbit are of the or
10, while the unstable eigenvalue of the period-three orbit
2720. The control is switched on atk50; every 500 driving peri-
ods we change the UPO to be controlled. The stroboscopic m
surementx(kT) in the Poincare´ sectionS1 and the applied contro
amplitude^udpu& averaged over one period of the UPO are sho
as functions of the periodk.
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changes to be taken into account. Herel is the discrete time
delay, i.e.,t5 lDt, andd the embedding dimension. This
an immediate consequence of the fact that in the time d
embedding space the mappingP(n,n11)5fuSn

Dt from section

Sn to the nextSn11 depends on all preceding parame
values that were changed during the time wind
tw5(d21)t of the delay vector. In an explicit calculatio
we show this dependence. In addition, we give a relat
between the linearized dynamics in the time-delay emb
ding space involvingAn andbn,i ,i50, . . . ,w, and the linear-
ized dynamicsÂn and b̂n in the physical state space. Wit
this relation one can, in principle, calculateAn andbn,i from
Ân andb̂n knowing the gradient of the measurement functi
h. This relation can be exploited in numerical simulations
investigate, e.g., different methods to obtainAn andbn,i from
measurement data~as we do in Appendix B! or to test qua-
sicontinuous control concepts without the cumbersome
traction ofAn andbn,i from measurement data.

Starting with the linearized dynamics includingAn and
bn,i in the time-delay space, there are two ways to obtain
explicit control formula. One is the extended state space
proach followed by the standard control requirements of
MED and the LC method; the other is a modified cont
requirement that requires stabilization not forzn11 but for
zn1w11 with dpnÞ0 and dpn115•••5dpn1w50. With
this modified control requirement one bears in mind that
parameter changedpn influences the system until the sectio
n1w11 anddpn21 only until n1w. While for the original
OGY method both approaches, i.e., extended state space
modified control requirement, are equivalent, for the qua
continuous control methods considered here~MED or LC!
this is no longer the case. In fact, it turns out that the
tended state space approach is not suited for the MED o
LC method as it leads to a control formula that depends
the scaling of the control parameterp. In the experiment we
demonstrate that this scaling dependence causes a b
down of the control for certain units ofp. In contrast, the
control formulas based on the modified control requirem
show a good control performance in the experiment, even
high periodic orbits with large instabilities. Furthermore, b
tween the LC method and the MED method no qualitat
difference could be observed. Both methods will lead to s
isfying control results provided that a high enough cont
frequency has been used. Finally, we remark that for con
experiments where the control parameters have been d
mined in advance it is advisable to use an adaptive o
correction to obtain an optimal reference value for the fe
back control. This improves the control performance cons
erably irrespectively of which OGY control method has be
used.
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APPENDIX A: EXPLICIT RELATION BETWEEN
THE LINEARIZATIONS IN THE PHYSICAL STATE

SPACE AND THE DELAY STATE SPACE

In this appendix we show that the linearizationsAn and
bn,i in the time-delay embedding space can be explic
y
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calculated from the corresponding linearizationsÂn and b̂n

in the physical state space and the gradient of the meas
ment functionh. Before we give this relation we briefly re
call our notation of Sec. II. First remember that we alwa
use a caret for the quantities in the physical state spac
order to distinguish them from the corresponding ones in
time delay embedding space. The embedding functionFn

relates a stateẑn in the physical state space with a statezn in
the time delay embedding space. According to Eq.~2!, Fn
depends for active quasicontinuous control on the lastw pa-
rameter changes, i.e.,zn5Fn( ẑ

n,pn2w, . . . ,pn21). The
vector of parameter perturbation is abbreviated
pn215(pn2w, . . . ,pn21) for active control and for the un
perturbed dynamics asp05(p0 , . . . ,p0)PRw.

Now we can express the relation between the linear
tions in the delay state space and the physical state spa

An5D ẑnFn11~ ẑF
n11 ,p0!•Â

n
•D ẑnFn~ ẑF

n ,p0!
], ~A1a!

~bn,w, . . . ,bn,1!5Nw•Gn112An
•Gn , ~A1b!

and

bn,05D ẑn11Fn11~ ẑF
n11 ,p0!•b̂

n. ~A1c!

HereNw is thew3w elementary nilpotent block@Eq. ~11b!#
andD ẑnFn( ẑF

n ,p0) andGn5Dpn21Fn( ẑF
n ,p0) are the Jaco-

bian matrices ofFn with respect to the stateẑn and the
parameter perturbationspn21. In Eq. ~A6! and ~A10! these
matrices are given as a function ofÂn, b̂n, and the gradient
of the measurement functionh. Finally,D ẑnFn( ẑF

n ,p0)
] de-

notes the Penrose pseudoinverse of thed3d̂ matrix
D ẑnFn( ẑF

n ,p0) with d̂ and d being the dimensions of the
Poincare´ sections in the physical state space and the de
state space.

In order to derive the relations~A1! we consider the ex-
tended states

ŷn5~ ẑn,pn21!†, yn5~zn,pn21!†

and its successorsŷn11 andyn11. In the physical state spac
the flow mapP̂(n,n11) can be simply extended to a mappin
P̂(n,n11) that develops a stateŷn into ŷn11 via

ŷn115P̂~n,n11!~ ŷn,pn!

5„P̂~n,n11!~ ẑn,pn!,pn….

The linearizations Ĉn5D ŷP̂(n,n11)( ŷF
n ,p0) and d̂n5(]/

]pn)P̂(n,n11)( ŷF
n ,p0) of this map around the UPO

ŷF
n5( ẑF

n ,p0)
† and p0 are related to the linearizations o

P̂(n,n11) in Eq. ~5! by

Ĉn5S Ân 0

0 Nw
D ~A2a!

and
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d̂n5~ b̂n,0, . . .,0,1!†. ~A2b!

For the dynamics in the time delay embedding the
tended flow mapP(n,n11) that develops a stateyn to yn11 is
analogously defined by

yn115P~n,n11!~yn,pn!

5„P~n,n11!~yn,pn!,pn…. ~A3!

The linearizations Cn5DynP(n,n11)(yF
n ,p0) and

dn5(]/]pn)P(n,n11)(yF
n ,p0) of Eq. ~A3! around the embed

ded UPOyF
n andp0 are already given in Eqs.~10! and~11!.

Let us now consider the relation between the mappi
P̂(n,n11) in the physical state space andP(n,n11) in the em-
bedding space. To do this we need the functionCn between
the original statesŷn and the corresponding statesyn in the
embedding space

yn5Cn~ ŷ
n!5„Fn~ ŷ

n!,pn21
…

†. ~A4!

Using this extended embedding functionsCn and writing
Ppn

(n,n11) instead ofP(n,n11)( ,pn), we obtain

Ppn
~n,n11!

5Cn11+P̂pn
~n,n11!

+Cn
21 .

The linearization of this equation leads to a connection
tween the quantitiesĈn,d̂n andCn,dn, i.e.,

Cn5D ŷn11Cn11~ ŷF
n11!•Ĉn

•DynCn
21~yF

n ! ~A5a!

and

dn5D ŷn11Cn11~ ŷF
n11!•d̂n. ~A5b!

The relations~A5! allow one to calculate the quantitiesCn

and dn from the corresponding linearizationsĈn and d̂n in
the physical state space, ifD ŷn11Cn11( ŷF

n11) and
DynCn

21(yF
n) are known. As we will demonstrate in the fo

lowing, it is possible to determineD ŷn11Cn11( ŷF
n11) and

DynCn
21(yF

n) when the linearized flow mapÂn andb̂n in the
physical state space and the gradient of the measure
functionh are known.

We first consider the embedding functionFn defined by
Eq. ~2! in the case that no control is applied. Let us assu
that the physical state space is spanned by the phase o
driving andd̂ physical coordinates, so that the Poincare´ sec-
tion Ŝn is a d̂-dimensional set. Having chosend time-delay
coordinates and the phase of the driving for the reconstru
states, the dimension of the standard Poincare´ sectionSn is
d, which is in general higher than the dimensiond̂ of Ŝn in
the physical state space. Therefore, the image of the em
ding functionFn(Ŝn ,p0) is only a d̂-dimensional subset o
Sn . Restricted to this subsetFn( ,p0) is a diffeomorphism
betweenFn(Ŝn ,p0) and Ŝn .

Let us now derive the Jacobian matrixD ẑnFn( ẑF
n ,p0) of

the embedding functionFn( ,p0) with respect to a point
-

s

-

ent

e
the

ed

d-

ẑF
n . Using the definition of the embedding function in E

~2!, the entries of thed3d̂ matrixD ẑnFn( ẑF
n ,p0)5(f i , j

n ) are
given by

f i , j
n 5

]

] ẑj
n
h„P̂~n,n2~ i21!l !~ ẑF

n ,p0!….

The first row ofD ẑnFn( ẑF
n ,p0) is the gradient of the mea

surement functionh, i.e., (f1,1
n , . . . ,f1,w

n )5¹h( ẑF
n). The re-

maining entries can be written as

f i , j
n 5@¹h•~Ân2~ i21!l !21

•••~Ân21!21# j ~A6!

for i52, . . . ,d̂, where the square brackets@ # j denote the
j th component of the included vector.
SinceFn( ,p0) maps states from ad̂-dimensional space

Ŝn to a subset of thed-dimensional spaceSn , the inverse
of the Jacobian matrixD ẑnFn( ẑF

n ,p0) does not exist.
But we can determine the Jacobian matrix of the inve
embedding Fn

21( ,p0) remembering thatFn( ,p0) is

a diffeomorphism betweenŜn and the submanifold
Fn(Ŝn ,p0). Thus the derivativeD ẑnFn( ẑF

n ,p0) is bijective

between thed̂-dimensional tangent spacesTẑ
F
nŜn>Rd̂ and

Tz
F
nFn(Ŝn ,p0)>Rd̂,Rd. It is known that in such cases th

derivative DznFn
21(zF

n ,p0) of the inverse mapping
Fn

21( ,p0) with respect tozF
n is given by the Penrose

pseudoinverse of the matrixD ẑnFn( ẑF
n ,p0). To calculate the

pseudoinverse, which we denote byD ẑnFn( ẑF
n ,p0)

], the sin-

gular value decomposition of the matrixD ẑnFn( ẑF
n ,p0) can

be used.D ẑnFn( ẑF
n ,p0)

] is then given by

D ẑnFn~ ẑF
n ,p0!

]5Vn•Wn
21
•Un

† , ~A7!

with Un•Wn•Vn
† being the singular value decomposition

D ẑnFn( ẑF
n ,p0).

Now we turn to the extended embedding functionCn
defined in Eq.~A4!, which is used to describe the embeddi
process when the control is activated. The Jacobian matri
Eq. ~A4! with respect to the pointŷF

n5( ẑF
n ,p0)

† is split into
four parts

D ŷnCn~ ŷF
n !5S D ẑnFn~ ẑF

n ,p0! Gn

0 1w D , ~A8!

where1w is thew-dimensional identity matrix,0 a zero ma-
trix with d̂ columns andw rows, andD ẑnFn( ẑF

n ,p0) the

above described Jacobian matrix.Gn5Dpn21Fn( ẑF
n ,p0) is

the Jacobian matrix ofFn with respect to the parameter pe
turbationpn21 aroundẑF

n andp0PRw. The definition ofFn

in Eq. ~2! leads to ad3w matrix Gn5(g i , j
n ) with

g i , j
n 5

]h „P̂„n,n2~ i21!l …~ ẑF
n ,pn2~ i21!l , . . . ,pn21!…

]pn2w211 j .

~A9!
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All entries g1,j
n in the first row ofGn are zero since the firs

component ofzn in Eq. ~2! does not depend on precedin
parameter values. To obtain the second component in Eq~2!
l preceding parameter values are necessary and thus
exist l nonzero entries in the second row ofGn . In general,
the g i , j

n are nonzero fori52, . . . ,d and j51, . . . ,(i21)l .
They are given by

g i , j
n 5¹h•~Ân2~ i21!l !21

•••~Ân2w211 j !21
•b̂n2w211 j .

~A10!

The Jacobian matrix of the inverse embedding proc
Cn

21(yF
n) is now related to the Jacobian matrixD ŷnCn( ŷF

n)

again via the pseudoinverseD ŷnCn( ŷF
n)]. For a numerically

stable determination ofD ŷnCn( ŷF
n)] it is appropriate to use

the relation

D ŷnCn~ ŷF
n !]5S D ẑnFn~ ŷF

n !] 2D ẑnFn~ ŷF
n !]

•Gn

0 1w D ,
~A11!

which follows from Eq. ~A8! because the produc
D ŷnCn( ŷF

n)]
•D ŷnCn( ŷF

n) gives the identity1d̂1w .

Having determined the quantitiesD ŷnCn( ŷF
n) and

DynCn
21(yF

n)5D ŷnCn( ŷF
n)], we finally consider Eq.~A5!

once again. Taking into account Eqs.~11!, ~A2!, ~A8!, and
~A11!, we obtain the relations given in Eqs.~A1!. Having the
explicit expressions forGn and Dẑn11Fn11( ẑF

n11 ,p0) @Eqs.

~A6! and~A10!# as a function of¹h, Ân, andb̂n in mind, Eq.
~A1! gives an explicit formula to calculate the linearizatio
in the embedding space.

APPENDIX B: DETERMINATION
OF THE LINEARIZATIONS IN THE EMBEDDING

SPACE FROM MEASUREMENTS

The relation given in Appendix A can be used to det
mine the linearizations in a time delay embedding when
corresponding ones in the physical state space are acces
For example, if the equations of motion are given by
ordinary differential equation then the linearizationsÂn and
b̂n can be obtained by numerically integrating the equati
of motion together with its variational equations@22#. With
the relation of Appendix A, the linearizationsAn andbn,i in
the embedding space can then easily be calculated. Us
in experiments the equations of motion are not known a
thus the linearizations have to be determined solely fr
experimental data. We will now show how we extract t
linearizationsAn andbn,i from two time series.

For that purpose we consider a numerical simulation o
Duffing oscillator so that we are able to compare the line
izations extracted from a time series with the correct on
The double-well Duffing oscillator is given b
ẍ1a ẋ2x1x35g cosvt1p, with a50.15, g50.3, and
v51 @23#. According to our notation, a point in th
standard Poincare´ section Ŝn is given by ẑn

5„x(t01nDt),ẋ(t01nDt)…†, with Dt5T/N. As in the
bronze ribbon experiment, we useN564 Poincare´ sections.
ere

s

-
e
ble.
n

s

lly
d

a
r-
s.

An UPO ẑF
n of the system has been determined by a stand

Newton algorithm and the corresponding linearizationsÂn

and b̂n via the variational equations. As the measurem
function h we use the displacement of the oscillator, i.
h( ẑn)5xn5x(t01nDt). The dynamics of the system is re
constructed withd53 time delay cooordinates and a dela
l510. The valuesd53 and t510Dt are obtained by the
integral local deformation method of Buzug and Pfister@20#.

To extract the mappingsAn we numerically integrate the
system 100 000 periods and record in each sectionSn
m5100 nearest-neighbor pointsznj of zF

n and the following
points znj11. In a first attempt one may try to estimate th
mappingsAn from a least-squares fit using the relation

dznj115An
•dznj , ~B1!

with dznj115znj112zF
n11 and dznj5znj2zF

n . To realize
that this attempt is not optimal, we remember that the m
pingsAn, which are represented byd3d matrices, describe
the linearization of the dynamics from thed̂-dimensional
tangent spacesTz

F
nFn(Ŝn ,p0) embedded inR

d to the tangent

spacesTz
F
n11Fn11(Ŝn11 ,p0) embedded inRd. Thus, for an

optimal estimation it is necessary that the difference vec
dzj

n anddznj11 lie in the tangent spaceTz
F
nFn(Ŝn ,p0) and

Tz
F
n11Fn11(Ŝn11 ,p0), respectively. But, in general, th

dznj are not infinitesimal and theznj and znj11 lie in
Fn(Ŝn ,p0) and Fn11(Ŝn11 ,p0), which generally have a
curvature inSn andSn11. Therefore,dz

nj anddznj11 of the
m nearest-neighbor points are not restricted to
d̂-dimensional subspace as they should be in the ideal cas
inifinitesimal distances.

To eliminate these extra dimensions that enter due to
curvature ofFn(Ŝn ,p0) andFn11(Ŝn11 ,p0) we introduce
projectionsPz

F
n andPz

F
n11 that project the differencesdznj

anddznj11 onto the corresponding tangent spaces. The p
jectionPz

F
n can be estimated using the singular value deco

positionUn•Wn•Vn
† of the matrix (dzn1, . . . ,dznm)† of near-

est neighbors ofzF
n The singular values of this matrix

measure the extension of the nearest-neighbor points in
direction of the corresponding singular vectors, which are
columns of the orthogonal matrixVn . Assuming a suffi-
ciently small neighborhood, the nearest-neighbor points
mainly spread in the direction of the tangent space. Thus
tangent space is spanned by the directions correspondin
the d̂ largest singular values, whered̂ is the dimension of the
tangent spaceTz

F
nFn(Ŝn ,p0). The remaining singular vec

tors are normal to the tangent space, indicating the direct
of the curvature of the manifold. So we obtain for the pr
jections

assuming that the singular values are ordered by size. In
case that the dimensiond̂ of the tangent space is not know
the method proposed in@24,25# can be used to estimated̂.
Broomhead, Jones, and King show that the directions of
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tangent space can be identified by the scaling behavior o
corresponding singular values when the diameter of
neighborhood is decreased.

After the determination of the projections, the mappi
An is estimated using the relation

Pz
F
n11•dznj115An

•Pz
F
n•dznj ~B2!

instead of Eq.~B1!. We investigated with the numerica
simulation of the Duffing oscillator the effect of using the
~B2! instead of Eq.~B1!. In Fig. 10~a! we show the first row
of An versusn resulting from a least-squares fit using E
~B1! and from a numerical calculation using the variation
equations and the relation~1a!. As can be seen, the values
An differ substantially. This error results from the neglect
curvature of the nearest-neighbor points. In contrast to t
in Fig. 10~b! we plot the differences of the first row of th
numerically calculatedAn with the one obtained by using Eq
~B2! for the fit. The maximal error is less than 0.004, so t

FIG. 10. ~a! First row (a1l
n ) of the linearizationsAn versus

n51, . . . ,N564 for an UPO of the Duffing oscillator usingd53
time-delay coordinates with time delayt510/64T. The solid lines
indicate the numerically calculated values@variational equations
and relation~A1a!# and the circles the values obtained by a lea
squares fit using Eq.~B1!. ~b! The differencesDa1l

n 5a1l ,fit
n

2a1l ,correct
n of the numerically calculatedAn and the ones obtaine

from a least-squares fit using the projections in Eq.~B2! are shown
for the componentsl51 (L), l52 (!), and l53 (d).
he
e

.
l

s,

e

components ofAn using Eq.~B2! could not be distinguished
from the solid line of the numerically calculated ones if th
were plotted in Fig. 10~a! too. This demonstrates that the u
of the projections in Eq.~B2! is necessary to improve th
estimation of the mappingsAn from a time series analysis.

In addition to the matricesAn, the dependencesbn,i on the
control parameter have to be extracted from the analysi
the experimental data. To do this the system is distur
everyDt by a small random parameter perturbationdpn. The
resulting time series then consists of a set of data pairs

~x1,dp1!,~x2,dp2!,~x3,dp3!, . . . .

Once again, out of 100 000 periods we record in each sec
Sn m5300 nearest-neighbor pointsznj of zF

n and the succes
sor pointsznj11. Since the dynamicsAn of the system in the
neighborhood of the UPO has already been determined
use the difference between a vectordznj11 andAn

•dznj to
determine the dependencesbn,w, . . . ,bn,0. They are obtained
by a least-squares fit using

Pz
F
n11•~dznj112An

•dznj !5(
i50

w

bn,idpnj2 i . ~B3!

The projectionPz
F
n11 is used for the same reason as in E

~B2!.
The successful determination of the dependencesbn,i is

exemplarily demonstrated for the UPO of the Duffing osc
lator. Both the numerically calculated first component
bn,i and the corresponding values extracted from a pertur
time series are shown in Fig. 11. The agreement between
exact values and the values extracted from a time serie
clearly visible, but it is not as good as in Fig. 10 where t
mappingAn has been determined.

-

FIG. 11. For an UPO of the Duffing oscillator the first comp
nent b1

n,i of the dependencesbn,i , i50, . . . ,w520, and
n51, . . . ,N564 is shown:~a! numerically calculated ones usin
Eqs.~A1b! and~A1c! and~b! extracted ones using the least-squa
fit ~B3!.
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